

Introduction (LFU)

> In SM, the coupling constants of each generation leptons with Z/γ are identical.

$$\rightarrow R_{K^{(*)}} \equiv \frac{\mathcal{B}(B \rightarrow K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \rightarrow K^{(*)}e^{+}e^{-})} \approx 1(SM) \text{ with very high accuracy.}$$

$$\approx \mathcal{O}(1\%) \text{ QED correction in}$$

 $M_{\ell\ell}^2 \equiv q^2 \in (1.1, 6.0) GeV^2/c^4$

10.1140/epjc/s10052-016-4274-7

Introduction (LFUV)

Introduction (LFUV)

Introduction (LFV)

Once LFU is violated, lepton flavor violation (LFV) is <u>no longer forbidden</u> in the model;

5

Today's contents

1. $\mathbf{R}_{\mathbf{K}^{(*)}}$ results by LHCb

- **2.** $R_{K^{(*)}}$ results by Belle
- 3. Prospects at Belle II
- 4. LFV searches

5. $B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

➤ JHEP08(2017)055

- 3fb⁻¹ proton-proton collision data at 7 and 8 TeV collected by LHCb detector
- $\succ \text{Reconstruct } B^0 \longrightarrow K^{*0} (\longrightarrow K^+\pi^-) \ell^+\ell^- \text{ mode}$
- q² bins are divided into: [0.045, 1.1] (low) and [1.1, 6.0] (central)

Bremsstrahlung recovery in $\ell = e$

 In case that e⁻ emitted bremsstrahlung in upstream of the magnet, the cluster of bremsstrahlung γ detected at ECAL should be found and recovered.

R_{K*} measurement @LHCb

LHCb Spectrometer

> **Double-ratio** with $K^{*0}J/\psi(\rightarrow \ell^+\ell^-)$ is taken to cancel systematics;

<u>Note</u>

This strategy is also adopted in R_K measurement at LHCb.

Result of R_{K*} @LHCb

LHCb ГНСр

R_K measurement @LHCb (2019)

- ➢ PRL122(2019)191801 (Run1+Run2, 5fb⁻¹)
- \succ q² ∈ (1.1, 6.0) GeV²/c⁴
- > Analysis technique is similar as $K^*\ell^+\ell^-$ study.

$$\mathbf{R}_{\mathrm{K}^+} = \mathbf{0.864}^{+0.060+0.016}_{-0.054-0.014}$$

← Compatible with the SM at 2.5σ level

R_K measurement @LHCb (2021)

- arXiv:2103.11769 (Run1+Run2, updated with 9fb⁻¹)
- \succ q² ∈ (1.1, 6.0) GeV²/c⁴
- Same analysis strategy is taken as their previous study with 5fb⁻¹.

$$\mathbf{R}_{\mathbf{K}^+} = \mathbf{0.846}^{+0.042+0.013}_{-0.039-0.012}$$

← <u>Evidence</u> of LFUV at 3.1 σ level

R_{K*} measurements @Belle

➢ PRL.126.161801

- ➤ 711fb⁻¹ (772x10⁶ BB̄) collected by Belle detector.
- Reconstruct 4 decay modes:
 - $B^+ \to K^{*+} \left(\to K^+ \pi^0, K^0_S \pi^+ \right) \ell^+ \ell^-$

$$- B^0 \to K^{*0} (\to K^+ \pi^-, K^0_S \pi^0) \ell^+ \ell^-$$

Results in several q² bin options, including high q² region (up to 19 GeV²/c⁴).

BELLE

Results of R_{K*} @Belle

q ² (GeV ² /c ⁴)	Comb. (B ⁰ /B ⁺)
[0.045, 1.1]	$0.52^{+0.36}_{-0.26}\pm0.05$
[1.1, 6]	$0.96^{+0.45}_{-0.29} \pm 0.11$
[0.045, 19]	$0.94^{+0.17}_{-0.14} \pm 0.08$

- \succ R_{K*} measured in Belle is **all consistent with SM**.
 - The largest deviation is in the lowest q² bin. (same as LHCb)
- > This is the first result for $R_{K^{*+}}$ measurement.

R_K measurements @Belle

Signal enhanced distributions

- > 711fb⁻¹ (772x10⁶ $B\overline{B}$) collected by Belle detector.
- > Both R_{K^+} and $R_{K_{S}^0}$ are measured.
- > 3D fitting with M_{bc} , ΔE , and modified Neural Net output. 2021/6 FPCP2021 Shun Watanuki

BELLE

Results of R_K @Belle

q ² (GeV ² /c ⁴)	Comb. (B ⁰ /B ⁺)
[1.0, 6.0]	$1.03^{+0.28}_{-0.24} \pm 0.01$
whole q ²	1. 10 ^{+0.16} _{-0.15} \pm 0.02

R_K measured in Belle is all consistent with SM.

The red bin is corresponding to the same range as the study at LHCb.

Prospects @Belle II

- The uncertainty both stat. and syst. can be much réduced.
 - A dominant source of systematics comes from imperfect lepton ID.
 - After improve this, $R_{K^{(*)}}$ become statistical uncertainty dominant.
- Complementary study with LHCb can be performed at Belle II:
 - Clean study in electron channel; Angular study for $B \rightarrow K^*e^+e^-$
 - Inclusive study $(X_s \ell^+ \ell^-)$; Measurement with small theoretical error

Observables	Belle $0.71 \mathrm{ab^{-1}}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$R_K \; ([1.0, 6.0] { m GeV^2})$	28%	11%	3.6%
$R_K \ (> 14.4 {\rm GeV}^2)$	30%	12%	3.6%
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%
$R_{K^*} \ (> 14.4 {\rm GeV^2})$	24%	9.2%	2.8%
R_{X_*} ([1.0, 6.0] GeV ²)	32%	12%	4.0%
$R_{X_*} \ (> 14.4 {\rm GeV^2})$	28%	11%	3.4%
/	FPCP2021 Shun Watanuki		EP 2019 (2019) 12

17

Summary of LFV searches

Mode	BR U.L. (90% CL)
$B^0 \rightarrow K^{*0} \mu^+ e^-$	<1.2x10 ⁻⁷ (Belle)
$B^+ \rightarrow K^{*0} \mu^- e^+$	<1.6x10 ⁻⁷ (Belle)
B+→K ^{*0} µe	<1.8x10 ⁻⁷ (Belle)
$B^+ \rightarrow K^+ \mu^- e^+$	<7.0x10 ⁻⁹ (LHCb)
	<3.0x10 ⁻⁸ (Belle)
$B^+ \rightarrow K^+ \mu^+ e^-$	<6.4x10 ⁻⁹ (LHCb)
	<8.5x10 ⁻⁸ (Belle)
$B^0 \rightarrow K_s^0 \mu^{\pm} e^{\mp}$	<1.8x10 ⁻⁷ (Belle)
$B^+ \rightarrow K^+ \tau \mu$	<4.8x10 ⁻⁵ (BaBar)
$B^+ \rightarrow K^+ \tau e$	<3.0x10 ⁻⁵ (BaBar)
$B^+ \rightarrow K^+ \tau^+ \mu^-$	<3.9x10 ⁻⁵ (LHCb)

So far, no any signs of LFV have been found...

FPCP2021 Shun Watanuki

- = (possibly) stronger couplings with NP
- ► BaBar succeeded to set the U.L. $\mathcal{O}(10^{-5})$ in both $(\ell = \mu/e)$ channels.
- $\blacktriangleright \quad \underline{\text{Belle II 50ab}^{-1}} \text{ is expected to set } < 3.3 \times 10^{-6}.$

LHCb

LHCb also succeeded to set the U.L. $\mathcal{O}(10^{-5})$ in $K^+\tau^+\mu^-$ channel.

- Primary and 2nd vertices are determined by high quality tracks.
- Energy of B is calculated with kinematic information.
- Direction of B can be known with vertices.

Mode

3.5

Δ

p+vv 24

4.0

The SLQ (PRD98,055003) predicts

 $\mathcal{B}(B \to \tilde{K}\tau\mu) \sim \mathcal{O}(10^{-7})$ against $R_{\nu\nu}$

Δ

Δ

 $\rho^0 \nu \bar{\nu}$

- A search of $B^+ \to K^+ \nu \bar{\nu}$ is also very interesting topic for the complementary probe of NP. $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{SM} = (4.6 \pm 0.5) \times 10^{-6}$
- Current the U.L. of exclusive mode is $\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})_{exp} < 1.6 \times 10^{-5}$ set by BaBar with hadronic tag
 - PhysRevD.87.112005
- Belle also performed the search both with semi-leptonic and hadronic tag and set the most stringent U.L. on other modes.
 - PhysRevD.96.091101

in 10-2

10

Δ

 $K^+ \nu \bar{\nu} K^0_S \nu \bar{\nu} K^{*+} \nu \bar{\nu} K^{*0} \nu \bar{\nu} \pi^+ \nu \bar{\nu} \pi^0 \nu \bar{\nu}$

B decay channel

$\rightarrow K$

- arXiv:2104.12624v2
- Recently Belle II reported <u>inclusive tag method</u> with **63fb**⁻¹(on-resonance) and **9fb**⁻¹(offresonance). $\mathcal{B}(B^+ \to K^+ \nu \overline{\nu}) < 4.1 \times 10^{-5}$
- Extract signal yields from pT x BDT₂ histograms in signal region (SR) and 3 control regions (CR) \succ by BDT_2 .
- The method can provide the **<u>competitive</u>** <u>sensitivity</u> with the conventional full reconstruction method.
- Let's see the update in Belle II. \geq

Summary

Lepton Flavor Universality

- > LHCb updated the R_K measurement and reported $R_{K^+} = 0.846^{+0.042+0.013}_{-0.039-0.012}$ which deviates from the SM with 3.1 σ .
- > Belle reported the consistent results with the SM both in R_K and R_{K^*} .
- > Complementary study at Belle II is also important as well as LHCb.

Lepton Flavor Violation

- ➤ LFV is possible once LFU is violated.
- LHCb, Belle and BaBar are looking for those modes, but no any signs of LFV have been found so far.
- ► Certain LQ models predict $\mathcal{B}(B \to K\tau\mu) \sim \mathcal{O}(10^{-6})$, and Belle II sensitivity with 50ab⁻¹ will be around it.

Other related studies

- ▶ Angular analyses of $B \rightarrow K^* \mu \mu$ at LHCb (and $B \rightarrow K^* ee$ at Belle II).
- ▶ Inclusive $B \rightarrow X_s \ell \ell$ study at Belle II.
- ▶ First report on $B^+ \to K^+ \nu \bar{\nu}$ with inclusive tag method by Belle II.
- → $B \rightarrow K\tau\tau$ will be also interesting since τ seems to receive NP effects, even though only Belle II can contribute to the mode significantly.

Global fits

arXiv:2103.12738

Neural network output for R_K @Belle

- > Modified Neural Net output; $\mathcal{O}' = \log \left[\frac{\mathcal{O} \mathcal{O}_{min}}{\mathcal{O}_{max} \mathcal{O}} \right]$
- ➢ Input parameters:
 - LR constructed from modified Fox-Wolfram moments
 - θ_B between the B flight direction and the z axis at CMS
 - θ_T between the Thrust axes
 - Flavor tag information
 - Confidence level of vertex fitting
 - The separation in z between signal and the other B'z
 - The separation between two leptons along z
 - Sum of ECL energy in signal side
 - CLEO cone thrust

$B \rightarrow X_s \ell \ell @Belle II$

 $\mathcal{B}(b \rightarrow s \mu \mu)$

Angular analyses with $B \rightarrow K^* \mu^+ \mu^-$

$B_s \rightarrow \mu \mu$

$B \rightarrow K \tau \tau$

$B \rightarrow K \nu \bar{\nu}$

- > Select the highest p_T kaon.
- Minimize the BG with event topology, missing energy and vertex separation.
- → $B^+ \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^+$ ignoring dimuon is used to validate the method.
- ➢ Signal eff. ~ 3-4%
- Fit is performed in pT x BDT₂ with <u>pyhf</u>.
- Sensitivity depends on q²;
 - ~10% eff. in q²~0
 - little sensitive $q^2 > 15 \text{ GeV}^2$

