~ -

::
Yy

L@ n~
R
3

\
-
s N
LNy
-

<

.
N
R
NN
o

\; e

A A P .A\.'.O

iy -..H... y . ’

.. B~ TS R
/ > )

0 H e

2Z2.w;m

vAry e, N
y .P

.

N

. : .‘ -
N

A

|

.'§: 4
2

o ! <

) N

N 8

' & .

> »

N

S5 8 ey, A

' 1L -
e 7 .
"\’

.y ‘..o- c '
. 3 .‘u.t \\. .\...A. ..., [
< \.,Af -4 g, ST
A‘ 4 7 9 \. y, ) od.



Parameter Estimation




Likelihood function

e Suppose the entire result of an experiment (set of measurements) is a
collection of numbers X, and suppose the joint PDF for the data x is a
function depending on a set of parameters 6: f(x; 0)

e Evaluate this function with the measured data x, regarding this as a
function of 6 only. This is the likelihood function.

— —

L(6) = f(%: ) (x, fixed)
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The likelihood function for i.i.d. data

i.i.d. = independent and identically distributed

e Consider n independent observations of {x : xy,--- ,x,}, where x

follows f(x, 6).
The joint PDF for the whole data sample is:

FOca, - xn;0) = [ [ f(xi;0)
=1

e In this case, the likelihood function is

L(f) = ﬁ f(xi:0) (x; constant)
i=1

So we define the max. likelihood (ML) estimator(s) to be the
parameter value(s) for which the L becomes maximum.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 4



ML estimator example: fitting to a straight line

e Suppose we have a set of data:
(X, yi,01), i=1,---,n.
e Modeling: y; are independent and follow ’ ol S
vi ~ G(u(xi),o0i) (G: Gaussian) where

w(x;) are modelled as 14 //1/1/{}1//

,u(X; (90,(91) = 0y + O1x 1.2
Assume x; and o; are known. |

e Goal: to estimate 6y oo L
’ ) 0 0.4 0.8 1.2 1.6 2
Here, let’s suppose we don’t care about T
¢, (an example of a nuisance parameter)
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ML fit with Gaussian data

e In this example, the y; are assumed independent, so that likelihood
function is a product of Gaussians:

1 (y; — u(x;; 00,01))°
H ;
rgl 2 o

L

L(6o, 61)

e Then maximizing L is equivalent to minimizing

n 2
— 6o, 0
C(00.61) = —2InL(f.61) + C= 3" ¥ M@;zz 0, 01))
=1 1

i.e., for Gaussian data, ML fitting is the same as the method of least
squares

Wilks’ theorem

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 6



the Wilks’ theorem

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By S. S. WiLks

By applying the principle of maximum likelihood, J. Neyman and E. S.
Pearson® have suggested a method for obtaining functions of observations for
testing what are called composite statistical hypotheses, or simply composite

1 Presented to the American Mathmatical Society, March 26, 1937.

We can summarize in the

Theorem: If a population with a variate x is distributed according to the probabil-
ity function f(z, 6,, 6z - - - 6), such that optimum estimates 8; of the 0; exist which
are distributed in large samples according to (3), then when the hypothesis H 1s
true that 6; = 6y, v = m + 1, m + 2, . - . h, the distribution of — 2 log \, where \
ts given by (2) s, except for terms of order 1/+/n, distributed like x* with h — m
degrees of freedom.



ENES

the Wilks’ theorem

http://wwwusers.ts.infn.it/~milotti/Didattica/StatisticaAvanzata/Cowan_2013.pdf

Suppose we model the data X with a likelihood L(7) that depends on a set
of N parameters i = (u1,--- ,un). (For simplicity, let’s just consider a single
parameter (.)

o Define the statistic ¢, = —2In[L(p)/L(f)], where j is the ML estimator.

e The value of ¢, is a measure of how well the hypothesized parameter
stand in agreement with the observed data.

e Larger values of ¢, indicate increasing incompatibility between the data
and the hypothesized pu.

e According to Wilks’ theorem, if the parameter value y is true, then in the
asymptotic limit of a large data sample, the PDF of ¢, is a x* distribution
for N d.o.tf.

f(tum) ~ X}?V



ML fit or Least-square fit?

Consider we have a random variable x € [0, 3], and a
distribution f(x).

In a series of measurements, we obtained

e 9 events in [0,1), 10 events in [1,2), and 8 events in [2,3]

e We have a model of uniform f(x), and would like to estimate the
mean value of | f(x) dx for each histogram bin.

Run a thought-experiment, comparing
e maximum likelihood method, and least-square method

® Do they give the same result?



Bayesian likelihood function

e Suppose our L-function contains two parameters 6, and #;, where we have
some knoweldege about the prior probability on #; from previous
measurements:

7'('(90, 91) — 7'('0(90)7‘(‘1 ((91)
mo(0p) = const.

1 2 /oy 2
m1(61) = P e~ (0170p)"/20,
V £T0p

e Putting this into the Bayes’ theorem gives the posterior probability:

pCsto,00)? /208 1 L —(01-6,) /20

p(6y, 01]%) e~ U™
0, 91%) H\/ TOo; V 2moy,

e Then, p(0y|X) = [ p(6o,0:1|X) do;

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018



with alternative priors

e Suppose we don’t have a previous measurement of ¢; but rather a theorist
saying that 67 should be > 0 and not too much greater than, say, 0.1 or so.

In that case, we may try modeling the prior for 6; as something like

1
m(01) = ;e—el/i 91 >0, 7 =0.1

e From this we obtain (numerically) the posterior PDF for 6,

~— 40
= —1=0.1
o .| — t =0.01
32 |
g ~— 1 =0.001

&

24 |

e This plot summarizes all knowledge about
to.

16 -

0 PR 1 i 1 .. i
12 1.25 13 135 14 145

to
Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 11



Adv. subjects

other advanced topics

nuisance parameters & systematic uncertainties

spurious exclusion = the CLs procedure
look-elsewhere effect
blind analysis

12



What can go wrong in a measurement?

Consider a typical branching fraction measurement

(Nobs — kag) €norm

Nnorm Csig

B —

& Determination of any elements in the final number can be
wrong due to incomplete knowledge about the experimental
apparatuses, background contaminations, etc.

' All such sources shall be studied and corrected for. Any
uncertainties in these shall be included in the systematic
uncertainty.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018



Systematic uncertainties?

In statistics, they call it the “nuisance parameter”

| NON | Dictionary (6 found)
A | A Q_ nuisance] (%)

All BEFIED English Thesaurus Korean Korean - English  Apple  Wikipedia

nuisance nuisance | 'n(y)oosans |

nuisance... noun
nuisance... a person, thing, or circumstance causing inconvenience or
, annoyance: an unreasonable landlord could become a nuisance | |
nuisance... , : :
hope you're not going to make a nuisance of yourself.
nuisance... e [aw see PRIVATE NUISANCE.
nuisance... e [aw see PUBLIC NUISANCE.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 14



Adv. subjects

Nuisance parameters

e In general our model of the data is not perfect
>
\2—/ model: L(z|0) = 0z

truth: L($|9) = Qx + o,:x2 -+ ﬂ$3 4+ ...

i

e can improve model by including additional adjustable parameters:
L(x|0) — L(x|0,v)

e Nuisance parameter <> systematic uncertainty
Some point in the parameter space of the enlarged model must be
“true”

e Presence of nuisance parameter(s) decreases sensitivity of analysis to
the parameter of interest (e.g. larger variance of estimate).

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 15



Adv. subjects

e Suppose we have a statistic g to test a hypothesized value of a
parameter 6, such that the p-value of 0 is

o

Py = f(qel0,v) dqg
qg,0bs

e But what value of v should we use for f(qgy|0, v)?

*_j,__*s___ -

%

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 16




Profile likelihood ratio

e Base significance test on the profile likelihood ratio

profile likelithood - maximizes I. for
Specified u

K maximize L

- the likelihood ratio of point hypotheses gives optimal test
(by Neyman-Pearson lemma)
- the statistic above is nearly optimal

e Advantage of \(u) — in large sample limit, f(—21In A(u) | ) approaches a 2
pdf for n = 1 (by Wilks’ theorem)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 17



Adv. subjects

Spurious exclusion

Sometimes, the effect of a given hypothesized u is very small
relative to the null (u =0) prediction

e In that case, the distributions f (qu|1) and f (g |0) will be almost the
same.

® This means that one excludes

/‘/ f(q“ ‘#) hypotheses to which one has
| o . essentially no sensitivity (e.g.
—» critical region mu = 1000 TeV)
0 ® |t is called the “spurious
f(q“‘ ) exclusion”

du

“spurious” = not being what it claims to be

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 18



Spurious exclusion

In contrast, for a high-sensitivity test, the two pdf’s -- f (qu|11) and
f (gu|0) -- are well separated

1 (qulp)

!

— critical region

—.‘/ f(CIu‘O)

In this case, the power is substantially higher than 1—a.
Use this 'power' as a measure of the sensitivity.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 19



Adv. subjects

e The problem of excluding values to which one has no sensitivity is
known for a long time
e In the 1990s this problem was re-examined for the LEP Higgs search,

e.g.
T. Junk, NIM A 434, 435 (1999); A.L. Read, J. Phys. G 28, 2693 (2002).
and led to the “CL,” procedure for upper limits

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 20



The CLs procedure

e In the CLs formulation, one tests both the 4 =0 (b) and u > 0 (s + b)
hypotheses with the same statistic Q = —21n L, /Ly

-~ 01
Q L

[ ]
-

ﬂ-DE:— Q:nbs |- f (Q‘b)
i 5 —

f(Qls+b) | A%

0.04

Ps+b

PR Ls—l—b
= —21
e n(Lb)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 21




The CLs procedure

Adv. subjects

e The CL; prescription is to base the test on the usual p-value (CLg}),

but rather to divide this by CLy(= 1 — pp)

f(Q)

_ CLs—I—b Ds+b
-~ CL 1 —pp

CL;

e Reject s + b hypothesis if CL; < « f(Q|s+b)

e Makes “effective” p-value bigger

close, thus preventing exclusion if
sensitivity is low

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III)

0.1

0.06

0.08

0.04

0.02

when the two distributions become Py 2%
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Ps+b
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The CLs procedure

_ f(Qb)

:g: 0.5 -
f(Qls+b) s
04 — Q b
_ CLsyp  Psab - \ 008
CL, = — i :
CLy 1 —pp 03 :
e Reject s + b hypothesis if CL; < « 02
. : ! P
e Makes “effective” p-value bigger Pv .t sth
when the two distributions become
close, thus preventing exclusion if oL | : : !
Ce. . -1 -8 . 4 ]
sensitivity is low Q
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The CLs procedure - an example

Physics Letters B 725 (2013) 15-24

Search for the rare decay D — putu~
LHCb Collaboration

120

100

O

r‘ i

T

®

S
ol by

80

Candidates / (0.5 MeV/c?)
Candidates / (10 MeV/c?)

AR AN . T A

40 '}'/:{“:? —E
20 ?;} + _ ~
0 .."'I.Q " I n 0 '~."~"T-:.E,;.".":’L L(r—\\g.* N BN
140 145 150 1800 1850 1900 1950 2000
A my.,- [MeV/c?] My [MeV/c?]
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Physics Letters B 725 (2013) 15-24 CI—'S example
Search for the rare decay D — putu~

LHCb Collaboration

«)E" || l
2() combinatorial
15

10 D*Jr — Dlr
'¢ .
5 y D*—I— N DO[K_ —I—]ﬂ_—|— , \\
N y
N m =T Signal «~

O T ST . —, _
T1T0&48N 10
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Physics Letters B 725 (2013) 15-24 CI—'S example
Search for the rare decay D — putu~

LHCb Collaboration

The D® — u* = branching fraction is obtained from

N

— E
13(DO —> /,L+/,L_) A BENGLLAN 13(DO —> 7T+7T_)
N7T+7T_ SMM
= o X N+~ (1)

using the decay D** — DY T7 )+ as a normalisation mode,
where « is the single event sensitivity, Ny+,-+,-) are the

yields and &5, the total efficiencies for Dt - DY(xtm)m™
(D** — D%t =) T) decays. In this section the various contri-

26



Physics Letters B 725 (2013) 15-24 CI—'S example
Search for the rare decay D — putu~

LHCb Collaboration

o ... shows the Am and m,, distributions, together with the
one-dimensional binned projections of the two-dimensional
fit overlaid. The x?/ndf of the fit projections are 1.0 and 1.3,
corresponding to probabilities of 44% and 19%, respectively.

e The data are consistent with the expected backgrounds. In
particular, a residual contribution from D** — DY[x 7t |x™
events is visible among the peaking backgrounds.

e The value obtained for the D’ — u*u~ branching fraction is
(0.09 + 0.30) x 10~%.

e Since no significant excess of signal is observed with respect
to the expected backgrounds, an upper limit is derived.

e The limit determination is performed, ... in the RooStats frame-

work, using the asymptotic CL, method.
27



CL,

0.8

0.6

0.4

0.2

Phy

sics Letters B 725

0.5

——— 117 CLs example
(2013) 15-24

LHCb -

e how to read yellow/green band?
e what are solid and dashed curves?

ol
1 1.5
B(D’ — u* u)[107]

(x axis) assumed branching fraction of signal decay
e — CLs distribution from data
e - - - simulated by bkg. only sample; median for the expected CLs

distribution, with given value of s
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CL,

— T
Physics Letters B 725

(2013) 15-24

1 ~
0.8 LHCDb _
0.6 - —
0.4 —
0.2 —

. . ol

% 0.5 1 1.5

B(D" — u* w)[10°]

(Q1) Ex
(Q2)W

pected upper limit @ 90% CL, and @ 95% CL?

nat about observed upper limits?

CLs; example
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Adv. subjects

the Look Elsewhere Effect

30



consider...

Suppose you throw a coin 10 times, and you’ve got 10 heads,
zero tails.

® It’s very unusual.
® Can you quantify how unusual this result is?

In particular, can you say the probability for this kind of
peculiarity happening is 1/210 ?

® No! Think why!

What must then be the correct answer?

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 31



Gross and Vitells, EPJC 70:525-530 (2010), arXiv:1005.1891

L.ook-Elsewhere Effect

Suppose a model for a mass distribution allows for a peak at a
mass m with amplitude u

and the data show a bump at a mass mo

How consistent is this with the
no-bump (u =0) hypothesis?

=

1
90 100
m

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 32



Adv. subjects

e First, suppose that the mass peak value my was known a priori.
e Test consistency of bump with the 1 = 0 hypothesis with e.g. L-ratio

tri, = —21n (L(O’ mO))

L(:u7 mO)
where “fix” indicates that the mass peak value is fixed to my.

e The resulting p-value

oo

Plocal = f(tﬁx‘o) dtﬁx

Lfix obs

gives the probability to find a value of t, at least as great as the
observed value at the specific mass mg, and is called the local p-value.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 33



Adv. subjects

e Now, suppose we did not know where to expect a peak. In other
words, the signal can be found at every value of m.

e What we want is the probability to find a peak at least as significant as
the one observed anywhere in the distribution

e For this, include the mass as an adjustable parameter in the fit, then test
significance of peak using

L(0) Note: m does not appear in the
L(p,m) u=0 model

taoat = —21n

00
pglobal — / f (tﬂoat‘o) dtﬂoat
t

float,obs

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 34



Adv. subjects

Lrix VS. tﬂoat

e For a sufficiently large data sample, tg; ~ 2 for 1 deg. of freedom
(Wilk’s theorem)

e For tg,, there are two adjustable parameters, 1 and m, and naively
Wilk’s theorem says tgq, ~ x? for 2 d.o.f.

10 e
---f(tﬂmt HO): 117 .
0 (I 2y But, Wilk’s theorem does not hold in the
107"} e floating mass case because one of the
f : parameters (m) is not defined in the
L[ “ 1 = 0 model.
10 g2 = ]
- -
1 Vi . getting tqo. distribution is more
5 <, difficult.
10 8 - J
. R T -
0 5 10 15 20 25
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Adv. subjects

Approximate correction for LEE

e Need to relate the p-values for the fixed and floating-mass analyses (at
least approximately)

o (Gross & Vitells) The p-values are approximately related by
Gross and Vitells, EPJC 70:525-530 (2010), arXiv:1005.1891

Pglobal = Plocal + (N(C))

where (N(c)) = mean # of upcrossings of —21InL in the fit range based
on a threshold

L 72
C = lfix = Zlocal

e We may carry out the full MC (time and CPU-consuming) or do fixed-m
analysis and apply a correction factor (much faster!)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 36



Adv. subjects

a simulation shown in A. Bevan’s book

¢ 100 signal& 100 background
i events are generated over
[100 MeV, 160 MeV]

¢ histogram in 60 bins

looking for ¥ — ete ™~

40

Number of events

I I

- L
I_‘llllfl]lHlIlHII|HIT|IIH IIHlIHIlHIIlI

,—I

What about
1> i these? ,
10 | M
“ L
0 ’_‘T'_!J—I-l JIL] Sl 8 ol M 2 M
100 110 140 150 160

Invanant mass (MeV/c "

OK, we have a clear peak
at a known location!
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Adv. subjects

bonus topic

Experimental Bias &
Blind Analysis

38
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the “Clever Hans effect”

Hans answered questions correctly even when his trainer was not
in the room!

Psychologist Oskar Pfungst made a very important discovery:

if no one in the room knew the correct answer to the question being
asked of Hans, Hans didn't know the answer either!

Apparently, Hans was picking up on subtle (conscious or
unconscious) cues given by the questioners.

Hans was indeed clever, but not in the way people thought.

Medical applications: double-blind study of placebo effects

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 40



When will experimental results be biased?

Consider a typical branching fraction measurement

(Nobs — kag) €norm

Nnorm Csig

B —

Experimental biases

® Determination of any elements in the final number can be wrong due to
incomplete knowledge about the experimental apparatuses,
background contaminations, etc.

® All such sources shall be studied and corrected for. Any uncertainties in
these shall be included in the systematic uncertainty.

Experimenters’ bias

® This is difficult (impossible?) to assess, and has to be prevented at

all costs.
Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018



Events/5 MeV

I (Ex) experimental bias
" mB? >DOn* - i
EO — D*+ T %
B B~ —=>D*tn~ n~ \
§ First ever observation of exclusive
4r W B decays by CLEO (1983)
N
D
% N
53 2N
5200 ) 52I4O. T ”5280.
Mass (MeV)
Mode CLEO I branching fraction (%) PDG 97 branching fraction (%)
B~ — D°n~ 4.2 +4.2 0.53 % 0.05
B™ - D" n n~ 4.8 £+ 3.0 « 1 & . » 0.21 4+ 0.06
B - Dzt~ 1319 °e dominated by D* ™
B’ — D*tn~ 2.6 + 1.9 0.26 £ 0.04
Sum 24.6 £+ 10.5 1.26 = 0.10

42



(Ex) experimental bias

: ' ﬁ  ARGUS
b L
Ny @ W

0 0.5 1.0 1.5 2.0 2.5 3.0

B(B™ — p% 7)) = (1.13+£0.36 £ 0.27) x 107* from the analysis

B=(1.58 £0.11) x 10~* from PDG

perhaps, due to incomplete determination of background shape & amount ?

43



Was Gregor Mendel lucky?

Mendel discovered the law of genetic inheritance.

But his published data fits his model too well:

speculations
® publishing only his “best data”, throwing out the others, and/or

® taking data until the results seem to agree his pre-formulated theory,
then deciding to stop and publish

Experimenter’s bias?

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 44
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File drawer effect: Science studies
neglecting negative results

o) T EIR(5 wiwes G ¢ =

} By Dan Vergano, USA

|

* TODAY
"One of the most worrying ... is the loss
of negative data. Results that do not
confirm expectations—because they
yield an effect that is either not

statistically significant or just contradicts ,cia] scientists, as well as

an hypothesis—are crucial to scientific
progress, ... Yet, a lack of null and
negative results has been noticed in
innumerable fields.

Some scientific disciplines are reporting far fewer
experiments that didn't work out than they did twenty
20, suggests an analysis of the scientific literature.

1 particular, economists,
usiness school
asearchers and other

yme biomedical fields,

ppear increasingly

1sceptible to the "file- B CAPTION By Gaston
rawer' effect -- letting experiments that fail to prove
go unpublished -- suggests the Scientometrics journal
by Daniele Fanelli of Scotland's University of Edinbur



Stopping bias

... how to handle some of the ways we fool ourselves. One example:
Millikan measured the charge on an electron ... It's a little bit off
because he had the incorrect value for the viscosity of air. ... look at the
history of measurements of the charge of an electron, after Millikan. If
you plot them as a function of time, you find that one is a little bit bigger
than Millikan's, and the next one's a little bit bigger than that, and the
next one's a little bit bigger than that, until finally they settle down to a
number which is higher.

Why didn't they discover the new number was higher right away? It's a
thing that scientists are ashamed of—this history—because it's
apparent that people did things like this: When they got a number that
was too high above Millikan's, they thought something must be wrong—
and they would look for and find a reason why something might be
wrong. When they got a number close to Millikan's value they didn't look
so hard. And so they eliminated the numbers that were too far off, and

did other things like that..
by R. Feynman
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Some suggestions

Never determine your event-selection criteria using the data
sample that you will use to measure the signal

Always check to see whether your signal is robust as you vary your
cuts

Look at all the distributions you can think of for your sighal and
compare them with what you expect

Be careful not to underestimate the systematic errors associated
with ignorance of (1) the signhal efficiency, (2) background
composition, and (3) background shapes

from Jeff Richman’s lecture in Les Houches (1997)
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Blind analysis

& a technique for avoiding experimenter’s biases

& You commit ahead of time you will publish the result you get
when you “unblind”

& Blind analysis does NOT mean
® You never look at the data
® You can’t correct a mistake if you find one after unblinding

® The analysis is necessarily correct — It just means that it's blind and
less prone to experimenter’s bias

e A non-blind analysis is not necessarily wrong. It’s only left more open to
the risk of biases

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018
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mechanisms producing human biases

cut tuning on data
when to stop?

* You do an analysis and get a very strange result

e Spend a few days for checking, find a bug in the code, fix it.

 Then your result is consistent with prediction.
* You decide to stop and write a paper.

(Q) Had your initial result agreed with the prediction, would you
have ever detected a bug in your code?

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018
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Background

Efficiency

Sensitivity

N

Result
Cut Value

100 JALASELARS REELS LALLANLELLY R U REEEN RALEE LRI EE 7
90 £ Entries 1000 3
?g 3 Raw data @ean -0.1400E-02 3
60 E MS 0.9969;
50 F 3
W0E
30 £
20 £
10 E
0: . | I | ral iy IS TR
-5 -4 -3 -2 -1 0 1 2 3 4 5
Significance
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400 E
300 F
200 F
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200 E
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150 E
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Raw data
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Significance

All the figures in this slide are just cartoon pictures, nothing to do with any real incidence.
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Blind analysis — examples

VOLUME 70, NUMBER 8 PHYSICAL REVIEW LETTERS 22 FEBRUARY 1993

Improved Upper Limit on the Branching Ratio B(K? — p*e¥)

T

=, E791, BNL
- ° -{-
2 600 T
PT E_ 4+ o +
(MeV/c)? | .
400 [+
200 B
Hidden
signalbox| ., ., .,
500 510

M,. (MeV/c?)
FIG. 2. Plot of P% vs Me. Plus signs are 1989 data and
Y. Kwon ( Circles are 1990 data. 7-9, 2018 51



Blind analysis — examples

8 4 0 4 :
At (ps)
The value of ¢§; was hidden until all the procedure was

firmly established and the collaboration agreed on un-
blinding.

Belle (and BaBar, too)
for first observation of CPV in B9 to confirm
the KM mechanism

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018 52



Wrapping-up & test what you've learned
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A Data S/B Weighted
—— Sig+Bkg Fit (m =126.5 GeV)
-------- Bkg (4th order polynomial)

ATLAS PLB 716, 1 (2012)
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® How to determined the (local and global) significance of the signal?
® How to estimate the parameter, e.g. mass of the new resonance?

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018
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the green & yellow plots

= 10 e 2 m __ _ _ __ ATLAS PLB716,1 (2012) —
o E ATLAS 2011-2012  [@:0 E
£ | =7Tev [Ldt = 4.6-4.8 o ch>§0 d _
= - _ _ Cra 4  — Observe y
S5 [ f=sTev:Jiat=ses9m® TS T
O
33 1 fmmef |
(@)
107 () CLS Limits —
110 150 200 300 400 500
m,, [GeV]

e For every (assumed) value of my, we want to find the CL; upper limit on
uw=o(H)/osm(H) (solid curve)

e Also shown is the ‘expected upper limit’, determined for each assumed my
value, under the assumption that we see no excess above background.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018
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the pg plots
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e The local py values for a SM Higgs boson as a function of assumed my.

e The minimal py (observed) is 2 x 10~% at my = 126.5 GeV.
= local significance of 4.70 — reduced to 3.6¢ after LEE

Y. Kwon (Yonsei University) Statistical Techniques for HEP (III) Aug. 7-9, 2018
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explore & enjoy!




a suggested reading for advanced/interested students

Eur. Phys. J. C (2011) 71: 1554 THE EUROPEAN
DOI 10.1140/epjc/s10052-011-1554-0
PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan', Kyle Cranmer?, Eilam Gross’, Ofer Vitells’*

1Physics Department, Royal Holloway, University of London, Egham TW20 OEX, UK
2Physics Department, New York University, New York, NY 10003, USA
3Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

We describe likelihood-based statistical tests for use 1n high energy physics for the discovery
of new phenomena and for construction of confidence intervals on model parameters. We
focus on the properties of the test procedures that allow one to account for systematic
uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived
using results of Wilks and Wald. We motivate and justity the use of a representative data set,
called the “Asimov data set”, which provides a simple method to obtain the median
experimental sensitivity of a search or measurement as well as fluctuations about this
expectation.
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