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Outline

& Basic elements
e some vocabulary
e Probability axioms

e some probability distributions

& Two approaches: Frequentist vs. Bayesian

@ Hypothesis testing

@ Parameter estimation

/A |

& Other subjects — “nuisance”, “spurious”, “look elsewhere”



Freq. vs. Bayes.

A TALE OF TWO STATISTICS ...

Frequentist vs. Bayesian

“Bayesians address the question everyone is interested in by using
assumptions no-one believes,

while Frequentists use impeccable logic to deal with an issue of no
interest to anyone.”

“Bayes and Frequentism: a particle physicist’'s perspective’
by Louis Lyons, arXiv:1301.1273



Freq. vs. Bayes.

Two approaches

& Relative frequency

A, B, ... are outcomes of a repeatable experiment  Frequentist

P(A) — Iim times outcome is A

Nn— 00 n

& Subjective probability
A, B, ... are hypotheses (statements that are true or false)  Bayesian

P(A) = degree of belief that A is true

Frequentist approach is, in general, easy to understand, but
some HEP phenomena are best expressed by subjective prob.,
e.g. systematic uncertainties, prob(Higgs boson exists), ...



Freq. vs. Bayes.

Bayes’ theorem

& From the definition of conditional prob., we have

P(AN B) P(BNA)

PUAIB) = =55 P(A)

and P(B|A) =

ebut P(ANB)=P(BNA)

® therefore,
p(aB) = g&f 4

® First published (posthumous) by Rev. Thomas Bayes (1702-1761)

I ——

An essay towards solving a problem in the doctrine of chances,
Phil. Trans. R. Soc. 53 (1763) 370.



Freq. vs. Bayes.

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures ‘

PA) = —— P(B) = %

Whole space

0
‘B P(AIB) = " P(BIA) =

9
P(An B) = i
0 9
P(A) x P(BIA) = X 0 — = P(A N B)
0 0
P(B P(AIB) = X — = P(A B
(B) x P(AIB) @ (AN B)
Bob Cousins, CMS, 2008 = P(BIA) = P(AIB) X P(B) / P(A)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011



Freq. vs. Bayes.

Frequentist statistics — general philosophy

e In frequentist statistics, probabilities such as
P(SUSY does exist)

P(0.117 < a5 < 0.121)
are either O or 1, but we don’t have the answer

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018



Freq. vs. Bayes.

Bayesian statistics — general philosophy

e In Bayesian statistics, interpretation of probability is extended to the degree
of belief (i.e. subjective).

e suitable for hypothesis testing (but no golden rule for priors)

probability of the data assuming

hypothesis /7 (the likelihood) . I 1;?& ggc;l;?rlz;litthyé ic.1 Z.t,a

P(Z|H)m(H)
[ P(Z|H)x(H) dH

P(H|Z) =
/

posterior probability, 1.e., \ normalization involves sum
atter seeing the data over all possible hypotheses

e can also provide more natural handling of non-repeatable things:
e.g. systematic uncertainties, P(Higgs boson exists)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018



Freq. vs. Bayes.

(Ex) Bayesian answer for coin toss

Suppose I stand to win or lose money in a single coin-toss. My companion
gives me a coin to use for the game.

e Do I trust the coin? What is P(faircoin)?

¢ Frequentist answer:

- toss the coin n times

- P(heads) = lim,,_, . (ng/n)

- make a complicated statement about the results, which is only indirectly
about whether the coin is fair ...

e But I can only test the coin with five throws:

- What if I get 4H, 1T?
- Do I trust the coin, or claim that the game is unfair?

e What about Bayesian answer?



Freq. vs. Bayes.

(Ex) Bayesian answer for coin toss

Assume: a ‘bad’ coin has a 75% probability to show ‘head’
for a ‘“fair’ coin, it’s 50%

Priors:

P(fair|BG) = 0.50

P(bad|BG) = 0.50

Likelihoods: P(4H,1T)|
P(4H,1T|

Posterior:

P(fair|4H, 1T, BG) =

fair) = 0.1563

bad) = 0.3955

P(4H, 1T|fair) - P(fair| BG)
S P(4H,1T|i) - P(i|BG)

B 0.1563 - 0.50

~0.1563 - 0.50 + 0.3955 - 0.50

= (0.283

10



Freq. vs. Bayes.

(Ex) Bayesian answer for coin toss

Assume: a ‘bad’ coin has a 75% probability to show ‘head’
for a ‘“fair’ coin, it’s 50%

Priors:

P(fair|GG) = 0.95

P(bad|GG) = 0.05

Likelihoods: P(4H,1T)|
P(4H,1T|

Posterior:

P(fair]4H, 1T, GG) =

fair) = 0.1563

bad) = 0.3955

P(4H, 1T|fair) - P(fair| GG)
> . P(4H,1T|i) - P(i|GG)

= 0.88

11



Freq. vs. Bayes.

Frequentist or Bayesian, which one to use?

e While the classic or frequentist approach can lead to a well-defined
probability for a given situation, it is not always usable.

-> In such circumstances one is left with only one option: Bayesian.

e When data are scarce => these two approaches can give somewhat
different predictions,

but given sufficiently large data sample, they give pretty much the
same conclusion. In that case the choice between the two may be
regarded arbitrary.

® Perhaps, we may choose one for the main result, and try the other for
a cross-check.

12



Hyp. Testing

Hypothesis Testing




Hyp. Testing

Probability P(H |x)

e In the frequentist approach, we do not, in general, assign probability of a
hypothesis itself.

Rather, we compute the probability to accept/reject a hypothesis assuming
that it (or some alternative) is true.

e In Bayesian, on the other hand, probability of any given hypothesis (degree of
belief) could be obtained by using the Bayes’ theorem:

. PXH)m(H)
PR = p @) e () i

which depends on the prior probability = (H)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 14



Hyp. Testing

Hypothesis Testing

A hypothesis H specifies the probability for the data
(shown symbolically as X here),
often expressed as a function f(xX|H)

The measured data x could be anything:

* observation of a single particle, a single event, or an entire experiment
* uni-/multi-variate, continuous or discrete

the two kinds:

* simple (or “point”) hypothesis — f(X|H) is completely specified
* composite hypothesis — H contains unspecified parameter(s)

The probability for x given H is also called the likelihood of the hypothesis,
written as L(X|H)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018
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Hyp. Testing

Critical Region - what is it?

Consider e.g. a simple hypothesis Hy and an
alternative Hq

A (frequentist) test of Hy:
Specify a critical region w of the data space (2 such

that, assuming Hj, is correct, there is no more than
some (small) probability « to observe data in w

P()? - W’H()) < «

a: “size” or “significance level” of the test

If X is observed within w, we reject Hy with a
confidence level 1 — «

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II)

data space Q

critical region w

Aug. 7-9, 2018
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Hyp. Testing

Critical Region - how to choose

® In general, 4 an  number of possible

critical regions that give the same f(xIH )
significance level a. °

—> critical region

® Usually, we place the critical region \
against an alternative hypothesis H;
such that the probability to find an
event in w is low (a) if Ho is true, but
high if the alternative (Hi) is true.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 17



Hyp. Testing

Test statistic

e The boundary surface of the critical region
for an n-dim. data space can be defined by
an equation of the form:

g(@)

15 |
t(Xl, "o 7xn) = L
where t(xq, -+ ,X,) is a scalar test statistic.

e For the test statistic t, we can work out the 05
PDFs g(t|Hy), g(t|H1), etc.

Decision boundary is now given by a signle 0 2 3 4 5
‘cut’ on t, thus defining the critical region t

= for an n-dim. data space, the problem is
reduced to a 1-dim. problem

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 18



Hyp. Testing

lype-1, Type-1I errors

e Rejecting Hy when it is true is called the Type-I error

(Q) Given the significance « of the test, what is the maximum probability of
Type-I error?

e We might also accept Hy when it is indeed false, and an alternative H; is true.
This is called the Type-II error

The probability 5 of Type-II error:

P(XcQ—wlH;) =3

1 — 3 is called the power of the test with respect to H;

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 19



Hyp. Testing

lype-1, Type-1I errors

H . chosen

H0 true Correct decision,
Prob = 1-a

H . chosen

Type | error / \
yp ’ P(M|Ho) ,

Prob = a /

H true  Type Il error, Correct decision,

Prob= 3

Prob = 1-p ,//

P(M)

A

—

Optimal decision: minimize [ for given «

Y. Kwon (Yonsei University)
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Statistical Techniques for HEP (II)

Aug. 7-9, 2018
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Hyp. Testing

Defining a multivariate critical region

with “square cuts”
xr;, < C;
Tj < Cj

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 21
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(ex) artificial neural net, etc.

(ex) Fisher discriminants, etc.
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Hyp. Testing

algorithms for a multivariate critical region

& Many (old or new) methods for finding decision criteria

® Fisher discriminants
® Artificial neural networks
® Boosted decision trees

e Kernel density methods

3 many excellent software tools to do multivariate analysis.
Please explore yourself!

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018
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Hyp. Testing

I—Iow to choose an optimal test statistic

eyman -Pearson lemm >

For a test of size o of the simple hypothesis Hy,
to obtain the highest power w.r.t. the simple alternative H;,
choose the critical region w such that the likelihoot ratio satisfies

P(‘)aHl) > J
P(X|Ho) —

everywhere in w and is < k elsewhere,
where k is a constant chosen for each pre-determined size «.

e Equivalently, the optimal scalar test statistic is

t(x) = P(x|H1)/P(X|Ho)

(Note) Any monotonic function of this leads to the same test.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018



Hyp. Testing

exercise on Type-I, II errors

Since B — K™~ has much higher branching fraction than B — p~, the former can be a
serious background to the latter. It is crucial to understand the “efficiency” and “fake rate”
of K/m identification system of your experiment in this study. The figure below shows the
Mk~ invarianbt mass distribution, where one of the pion mass (in p° — 77~ decay) is
replaced by the Kaon mass, for the B® — p°~ signal candidates (Belle, PRL 2008).

B — p Express the following observables in Type-I & Type-II
errors. What are Ho & Hi, for each case?

W
o
|
——

Entries/(10 MeV/c?)
N
o

b
o o
T T T I T T T T T T T T T T T

...'iié-.;--;-:--_-._.:.._ ® f.+_ .+ = probability of misidentifyinga K™ asa «
2% 092 """" 104 116 ® ¢+ = prob. of identifying a K* correctly asa K™
M, _(GeV/c?) ® ¢_, = prob. of identifying a 7+ correctly asa 7™

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018

® f . _x+ = probability of misidentifying a 7+ asa K™

_|_
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ENES

an application of Neyman-Pearson Lemma

10 ¢

Data: Exp7 run 6 — 1897 (0426+0430+0517 reprocess)
MC: b20000517_1555

I — |
T p| : 1t ® K track (data)
’.’ : A 7 track (data)
) 3 K track (MC%

x K P I [ = track (MC

Entries/0.02/track

dE/dx

10g,q( p (GeVic) ) NN

01 02 03 04 05 06 07 08 09 I

Prob(k:pi)
dE/d .
P, =P, f x PIOY »x pCh eg. (i =7 or K)

For optimal statistic, construct the likelihood ratio
R/ = Pr /P, (or any ftn. that is monotonic to it)

Belle actually used Ry, = Px/(Px + Pr) sothat 0 < Ry, <1

26



Hyp. Testing

Proof (graphical)
1% we

P(x|f)

> kg
P(x|Ho)

Consider the contour of the likelihood ratio that has size a given
size (eq. probability under Ho is 1-(x)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 27



Hyp. Testing

Proof (graphical)

P(\_|Ho) = P(~/|Ho)

Now consider a variation on the contour that has the same size
(eg. same probability under Ho)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 28



P(x|H,)

< kq
P(x|Ho)

P(\_IH:1) < P(\_|Ho)k4

Hyp. Testing

P(\_|Hy) = P(_/ |Hy)

Proof (graphical)

P(x|f)

> ko
P(z|Ho)

P(_/|Hy) > P(_/|Ho)k,

P(\_|H1) < P(_/|H1)

Kyle Cranmer (NYU)

CERN School HEP, Romania, Sept. 2011

Y. Kwon (Yonsei University)

Statistical Techniques for HEP (II)

Aug. 7-9, 2018 29



(Quiz) With Neyman-Pearson lemma, we may have THE
way to optimize the critical region (“cut”). Then why
should we bother with multivariate analyses such as
artificial neural network, etc.?

&lHO P(_/|Hy) A(Ans.) The modeling of P(x|H) may
not be perfect, if the correlations

are not taken properly into account.
This will become more serious for
higher dimensions of x.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 30



Significance of signal

Hyp. Testing

PRD 92, 011101 (2015) Pl =<

<O

Mode Yiig e (%) B, (%) | Slgmflcanc
(@) B =, 306533 184 3941 |
(b) B® = n3,n®  0.5188 142 22.92 g

Combined

o)
-

)
-

~
-

Events / ( 0.003 GeV/c?)
() e
ICDI _ .O

Events / ( 0.003 GeV/c?)

e
-)

5.24 5.26 5.28 5.24 5.26 5.28
M., (GeV/c?) M, . (GeV/c?)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 31



Hyp. Testing

the p-value

>

Very un-likely
observations

Probability density

More likely observation

Y

P-value

[

Very un-likely
observations

Observed

data point\
®

Set of possible results

By User:Repapetilto @ Wikipedia & User:Chen-Pan Liao @ Wikipedia - File:P value.png, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=36661887

In short, p-value is the ‘size’ of a test against a given hypothesis.

Y. Kwon (Yonsei University)

Statistical Techniques for HEP (II) Aug. 7-9, 2018
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® With p-va

Hyp. Testing

the p-value

ue, we express the level of agreement b/w data and H

p = proba

vility, under assumption of H, to observe data with equal or

lesser compatibility with H, in comparison to the data we obtained

# the probability that H is true A

P(observation | hypothesis) # P(hypothesis | observation)

® (Note) The p-value, under null hypothesis, is uniformly distributed.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 33



Remember?

Gaussian (Normal) distribution

Hyp. Testing

TMath: :Prob(02,1)

o) )
0.2 1.280
0.1 1.640
0.05 1.960
0.01 2.580
0.001 3.290
10—4 3.890

Area of the tails o outside 40 from the mean of a Gaussian

f(x; u,0)
Q )
1-a 0.3173 lo
4.55 x102 20
/2 0/2 2.7 x1073 30
6.3x107° 4o
_:lg _|2 _;_ 0 ]l_ 2| 3 5.7X 10_7 Ho
(x-w)/o 2.0x10~? 60

Table 36.1:

distribution.

34



Hyp. Testing

Significance and the p-value

Often we quote the significance Z, for a given p-value

e Z = the number of standard dev. that a Gaussian random variable
would fluctuate in one direction to give the same p-value

o Ff
. .
o e X

Zz2.0

o0 ]. —1132/2
p=/ € dr =1—- ®(2) 1 - TMath: :Freq

7 2T

Z =&"1(1-p) TMath: :NormQuantile

(Ex) Z =5 (a “5-sigma effect”) < p =2.9 x 10”7

35



Hyp. Testing

p-value example: a fair coin?

We toss a coin N = 20 times and get n = 17 heads.
Test whether this coin is ‘fair’ or not.

Hypothesis Ho: the coin is fair (4 = 50% chance for head)

__ N “Gepy
P = S 4

binomial probability for n heads in N toss

Critical region w = data space with values equal or lesser
compatibility with H in comparison ton = 17

w={n=17,18, 19, 20, 0, 1, 2, 3)
P(n € w) = 0.0026 <« This is the p-value.

36



Hyp. Testing

Example: significance of a signal

We ebsevve m events ; n=n,+MNg
N everls from Known background
Ns S?ﬁ"“ﬁ eveuts (+ be tnfered from data D

A%(AMQ both Ns , N, one Poissom.

| \ _ (s+b)" _-(s+b)
P("‘ 1S.b) = —;l—!—l— <

Suppose b = 0.5 (assume precise), and we observe neps = 5.
Can we claim evidence for a signal excess?
Give p-value for the null hypothesis s = 0.

p-value = P(n >5;b=0.5,s =0)=1.7x 10~

37



2018 Korean Ladies Curling team (Olympic Silver)

(observation) All 5 members of the team are of family name ‘Kim’.
& (fact) According to census, ~20% of all Koreans have family name ‘Kim’.

(Hypothesis to test) The coach of the Team Kim (herself a ‘Kim’) has a
bias toward players with family name ‘Kim’.

38



“Intervals
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2016 Review of Particle Physics.
Please use this CITATION: C. Patrignani et al.(Particle Data Group), Chin. Phys. C, 40, 100C

t > Wb
« T(t—> Wb)T(t—Wq(g=b,s,d)

OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.

DOCUMENT ID TECN COMMENT
OUR AVERAGE Error includes scale factor of 1.5.
1 AALTONEN 2014G  CDF ’C + Hr + > 2j (0,1,
2 KHACHATRYAN 2014E CMS ¢ +Hr +2,3,4 (0 -
3 AALTONEN 2013G  CDF + Hr + > 3jets ( 2
4 ABAZOV 2011X DO

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018 40



Intervals

Measurement with errors

Let's say we are reporting a single measurement
r=a=xb
Frequentist interpretation

® Repeating the measurement many times under identical conditions
(“ensemble”), the estimated interval will vary each time. In 68.3%
of those results, the true value of x will lie within the interval.

Result of each measurement is a sampling from a Gaussian
distribution G(p,0)

® We may not know 1

® We have some idea about ¢ -- experimental sensitivity

41



Intervals

when u=*o is not enough...

If the PDF of the estimator is not Gaussian, or
if there are physical boundaries on the possible values of the
parameter,

one usually quotes an interval given a confidence level.

42



Intervals

Frequentist “confidence intervals”

on repeated measurements

Remember frequentist approach is always about repeated measurements
under identical conditions!

“confidence interval”

= intervals constructed to include the true value of the
parameter with a probability = (a specified value)

43



Frequentist “confidence intervals”

9
Consider a pdf f(x;0) Plri<x<z9;0)=1—a= / f(xz;0)dx
]

parameter 0

e X : outcome of an experiment

e O : unknown parameter for which we set the interval

4 the confidence interval,

<

— xl(:GO) ngeo)

Possible experimental values x

given a measured
outcome of xo = x1(6p)

“Neyman construction™

44



for Frequentist UL, the 90% (or whatever) integration
is done above the UL

45



for Frequentist UL, the 90% (or
0 whatever) integration is done
above the UL

A &=

1 —a=90% 1 —a=95%
n M1 2 1 2
0 0.00 2.44 0.00 3.09
1 0.11 4.36 0.05 5.14
2 0.53 5.91 0.36 6.72
3 1.10 7.42 0.82 8.25
4 1.47 8.60 1.37 9.76

Feldman-Cousins interval Phys. Rev. D57, 3873 (1998)

“unified approach”™
46



PHYSICAL REVIEW D VOLUME 57, NUMBER 7 I APRIL 1998

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman™
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins’
Department of Physics and Astronomy, University of California, Los Angeles, California 90095

(Received 21 November 1997; published 6 March 1998)

We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
(apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice i1s based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated
confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
[S0556-2821(98)00109-X |

PACS number(s): 06.20.Dk, 14.60.Pq
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a Bayesian procedure for intervals

Oup
1—a:/ p(0]z) d6
v,

lo
.

If the physical value is non-negative, () = < 0 s <0

one may choose a prior: g s >0
s+0)" _

Likelihood for s, given b, is P(nl|s) = ( - ) e~ (s10)

If what we seek is of a very low (or no) signal, interval = UL

Then S
’ - [fup B 1252 P(nl|s) w(s)ds
b-a= /_OO plsjn)ds = [25 P(n|s) m(s)ds
1

FX—21;inverse of the CDF - Sup = §FX—21[1 — 2(% 4 1)] _b



(Ex) UL on Poisson parameter

o Consider again the case of observing n ~ Poisson(s + b).
Suppose b = 4.5 and n,,; = 5. Find upper limit on s at 95% CL.

e Relevant alternative is s = 0O, resulting in critical region at low n.

e The p-value of hypothesized s is P(n < ngyg; S, b).
Therefore, the upper limit s, at CL = 1 — « is obtained from

Nobs n
Sqan + 6)"
Yy — P(Tl S rlObS: Sup’ b) - E ( up ) e (.Sup'f‘b)

n!
—0 r..

1
sup = 5 F\2 (1 — a5 2(ngps +1)) — b

1
— §F\_9_1(O.95; 2(5+ 1)) — 4.5 = 6.0

Y. Kwon (Yonsei University) Statistical Techniques for HEP (II) Aug. 7-9, 2018
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Confidence interval from inversion of a test

e For confidence intervals for a parameter 6, define a test of size « for
the hypothesized value 0 (repeat this for all )

- If the observed data falls in the critical region, reject the value 6.
- The values that are not rejected constitutes a confidence interval for u at
confidence level CL =1 — «..

e By construction the confidence interval will contain the true value of ¢
with probability > 1 — a.

* The interval depends on the choice of the test (critical region).

* If the test is formulated in terms of a p-value, py, then the confidence
interval represents those values of 6 for which py > a.

* To find the end points of the interval, set py = « and solve for 6.

50



Intervals

Coincidence of frequentist and Bayesian intervals

If the expected background is zero,

the Bayesian upper limit (for a Sup = %Fx_zl p,2(n+1)]—b
Poisson RV) becomes equal to the

limit determined by frequentist = %Fx_zl(l —a;2(n+ 1))
approach.

For more details, you may read e.g.
a statistics review in PDG. pdg.lbl.gov/2018/reviews/rpp2018-rev-statistics.pdf

51
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Parameter Estimation




Basics of parameter estimation

e The parameters of a PDF are constants characterizing its shape, e.g.

flx;0) = %e_x/ 7

where 0 is the parameter, while x is the random variable.

e Suppose we have a sample of observed values, X.
We want to find some function of the data to estimate the
parameter(s): 6(x).
Often 6 is called an estimator.
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__Param. Est.__

Properties of estimators

e If we were to repeat the entire measurement, the set of estimates
would follow a PDF:
best

A /
7N

large
variance

g(0;0)

biased

ll"'-,ll'.l /

A

- We want small (or zero) bias (= syst. error): b = E|f] — 0
- and we want a small variance (=- stat. error): V|0
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Bias vs. Consistency

unbiased biased
=
D
—
2
-3 N
1
8 N N
9( ) 9()

inconsistent
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Likelihood function

e Suppose the entire result of an experiment (set of measurements) is a
collection of numbers X, and suppose the joint PDF for the data x is a
function depending on a set of parameters 6: f(x; 0)

e Evaluate this function with the measured data x, regarding this as a
function of 6 only. This is the likelihood function.

— —

L(6) = f(%: ) (x, fixed)
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The likelihood function for i.i.d. data

i.i.d. = independent and identically distributed

e Consider n independent observations of {x : xy,--- ,x,}, where x

follows f(x, 6).
The joint PDF for the whole data sample is:

FOca, - xn;0) = [ [ f(xi;0)
=1

e In this case, the likelihood function is

L(f) = ﬁ f(xi:0) (x; constant)
i=1

So we define the max. likelihood (ML) estimator(s) to be the
parameter value(s) for which the L becomes maximum.
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ML estimator example: fitting to a straight line

e Suppose we have a set of data:
(X, yi,01), i=1,---,n.
e Modeling: y; are independent and follow ’ ol S
vi ~ G(u(xi),o0i) (G: Gaussian) where

w(x;) are modelled as 14 //rl/f)l//

,u(X; (90,(91) = 0y + O1x 1.2
Assume x; and o; are known. |

e Goal: to estimate 6y . e
’ ) 0 0.4 0.8 1.2 1.6 2
Here, let’s suppose we don’t care about T
¢, (an example of a nuisance parameter)
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ML fit with Gaussian data

e In this example, the y; are assumed independent, so that likelihood
function is a product of Gaussians:

1 (y; — p(xi; 00,61))°
H ;
\/701 2 o

L

L(6o, 61)

e Then maximizing L is equivalent to minimizing

n 2
— 6o, 0
C(00.61) = —2InL(f.61) + C= 3" ¥ M@;zz 0, 01))
=1 1

i.e., for Gaussian data, ML fitting is the same as the method of least
squares

Wilk’s theorem
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ENES

the Wilk’s theorem

@ We will encounter it later when we discuss the “likelihood ratio” ...

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES!

By S. S. WiLks

By applying the principle of maximum likelihood, J. Neyman and E. S.
Pearson® have suggested a method for obtaining functions of observations for
testing what are called composite statistical hypotheses, or simply composite

! Presented to the American Mathmatical Society, March 26, 1937.

We can summarize in the

Theorem: If a population with a variate z is distributed according to the probabil-
ity function f(z, 6,, 0z - - - 6), such that optimum estimates 8; of the 0; exist which
are distributed in large samples according to (3), then when the hypothesis H 1is
truethat 0; = 6,2 = m + 1, m + 2, - .. h, the distribution of — 2 log \, where \
ts given by (2) is, except for terms of order 1/+/n, distributed like x* with h — m
degrees of freedom.
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Basics

the Wilk’s theorem

http://wwwusers.ts.infn.it/~milotti/Didattica/StatisticaAvanzata/Cowan_2013.pdf

Suppose we model the data X with a likelihood L(j7) that depends on a set
of N parameters ji = (u1,---,un). (For simplicity, let’s just consider a single

parameter f.)

e Define the statistic t,, = —21In[L(u)/L(j1)

e The value of t,, 1S a measure of how we.

, where /i is the ML estimator.

] the hypothesized parameter u

stand in agreement with the observed data.

e Larger values of ¢, indicate increasing incompatibility between the data

and the hypothesized .

e According to Wilk’s theorem, if the parameter value u is true, then in the
asymptotic limit of a large data sample, the PDF of ¢, is a x* distribution

for N d.o.f.

f(tu‘,u) ~ X%\f
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ML fit or Least-square fit?

Consider we have a random variable x € [0, 3], and a
distribution f(x).

In a series of measurements, we obtained

e 9 events in [0,1), 10 events in [1,2), and 8 events in [2,3]

e We have a model of uniform f(x), and would like to estimate the
mean value of | f(x) dx for each histogram bin.

Run a thought-experiment, comparing
e maximum likelihood method, and least-square method

® Do they give the same result?
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Bayesian likelihood function

e Suppose our L-function contains two parameters 6y and 6;, where we have
some knoweldege about the prior probability on #; from previous
measurements:

7T(9(), (91) — 7'('()((90)7'('1((91)
mo(fo) = const.

1 2 /o 2
m1(01) = - e~ (0170p)7/20,
V £T0p

e Putting this into the Bayes’ theorem gives the posterior probability:

p00,00)? 207 11 L~ (01-6,)/20]

p(6o, 01]X) e~ Ui™
0, 01%) H \/ TO; V 2moy,

® Then, p((go ‘)?) = fp(@o, (91 ‘f) d(91
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with alternative priors

e Suppose we don’t have a previous measurement of #; but rather a theorist
saying that 67 should be > 0 and not too much greater than, say, 0.1 or so.

In that case, we may try modeling the prior for #; as something like

1
m(61) = —e /7 6, >0, 1 =0.1

-
e From this we obtain (numerically) the posterior PDF for 6,

—1=0.1
| t =0.01
-—1 =0.001

p(Ooly)

e This plot summarizes all knowledge about
to.

12 125 13 135 14 _ 145
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