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disclaimers

¢ freely taking from other people’s lecture materials, without
rigorously citing the references

® just a rough list (from which | composed this lecture mostly) ...

& not paying attention to any mathematical rigor at all

& It will be impossible to cover “everything” even with the
allocated time of 150 minutes...

® so, | end up covering just a little fraction of the story, with a
subjective choice of topics

& Please stop me any time if you don’t follow the story, otherwise
it will be merely a pointless series of slides.
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what to make sense of mpy plots, statistically

F—

> — =
G }  Data S/B Weighted .
Q100 — Sig+Bkg Fit (m =126.5 GeV) ]
% ) U Bkg (4th order polynomial) -
o 80— —
S r ATLAS PLB716,1 (2012) -
N 60— —
401 -
20

Illlll

—
B
—
—

> weights - Bkg




the green & yellow plots
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the py plots
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(Example) T2K result

PRL 107, 041801 (2011)
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Reterences (a very rough list)

® “Statistical Data Analysis” by Glen Cowan

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html (lectures at CERN)

e “Statistical Data Analysis for the Physical Sciences” by Adrian Bevan (2013)

® Tom Junk @ TRIUMF, July 2009

® mini-reviews on Probability & Statistics in RPP (PDG)
http://pdg.Ibl.gov/2015/reviews/rpp2015-rev-statistics.pdf



http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf

Outline

& Basic elements
e some vocabulary
e Probability axioms

e some probability distributions

& Two approaches: Frequentist vs. Bayesian

@ Hypothesis testing

@ Parameter estimation

/A |

& Other subjects — “nuisance”, “spurious”, “look elsewhere”



Basic elements




ENES

some vocabulary

 statistics, probability

© random variables, PDF, CDF

& expectation values

@ mean, median, mode

@ standard deviation, variance, covariance matrix
& correlation coefficients

& weighted average and error

11



Basics

Statistics & Probability

Statistics is largely the inverse problem of probability.

e Probability:
Know parameters of the theory = predict distributions of possible
experimental outcomes

e Statistics:

Know the outcome of an experiment = extract information about the
parameters and/or the theory

- Probability is the easier of the two — more straightforward.
- Statistics is what we need as HEP analysts.

- In HEP, the statistics issues often get very complex because we know so much
bout our data and need to incorporate all of what we find.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018

12



ENES

Probability Axioms

Consider a set S with subsets 4, B, ...

For all AC S,P(A) >0
P(S)=1

If ANB=0,P(AUB) = P(A) 4+ P(B)

Also define tio rail:

P(A|B) =

P(AN B)

P(B)

......
{}_ X .-;” .

iy e i

Kolmo

gorov (1933)
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Note: P(A|B) # P(B|A)

A = Kin
: P(A|B) =1/13 # P(B|A) = 1/4
B = Spade
4 2 & B & i&&i&&i&&;’.&*& 2o & 20 & [Sa,2
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Basics

Random variables and PDFs

e A random variable is a numerical characteristic assigned to an element of the
sample space; it can be discrete or continuous.

e Suppose outcome of experiments is continuous:

P(x € e, x + dx]) = f(x)dx
= f(x) is the probability density function (PDF) with

+00
flo)dx = 1

e Or, for discrete outcome x; withe.g. i =1,2,---

* P(x;) =p; “probability mass function”

* 2 iPx) =1

15
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Cumulative distribution function (CDF)

e The probability F(x) to have an outcome less than or equal to x is called the
cumulative distribution function (CDF).

/_X f(x"dx" = F(x) .

2 1

s|PDF @ CDF

0.75

F(x)

flx)
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0 | ! | | 0 | ! | |
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X X

e Alternatively, we have f(x) = 9F(x)/0x.



ENES

Expectation value
g(X), h(X): functions of random variable X

e for discrete X € (2

e for continuous X € 2

E(g) = / 4X f(X) g(X)

e F is a linear operator

Elag(X) 4 fh(X)] = aE[g(X)] + BE|h(X)]

17
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Examples of expectation values

e mean - expectation value for the PDF (f(X) or P(X;))

§=X X) = | dxfoox

e variance - it may not always exist!

18
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sample mean & sample variance

e n measurements {x;} where x; follows N(u, o)

e sample mean

= 1; (f>

With more measurements, the estimation of the mean will become more
accurate.

e sample variance

Sample variance approaches o2 for large n.

19



ENES

Mean and Variance in 2-D

e Expectation value in 2-D: (X,Y) as RV

E[g(X,Y)] / dx dy f(X,Y) g(X,Y)

=- Extension to higher dimension is straightforward!

e =B = [ [ axdvsecnx

e mean of X

e variance of X

0% = E[(X — ix)’ / dX dY f(X,Y) (X — px)?

20
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Covariance matrix

e Given a n-dimensional random variable X = (X3, ,X;), the
covariance matrix Cj is defined as:

Cij = E[(Xi — pi) (X — 1))
= EXiXj| — pipy

e more intuitive is the correlation coefficient, p;;, given by

Pij =
0i0]

21
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properties of covariance matrix

e bounded by one: —1 < p; < +1

e for independent variables X,Y: p(X,Y) =0
But the reverse is not true! (e.g. Y = X?)

o Iff(Xy,---,Xn)is a multi-dim. Gaussian, then cov(X;,X;) gives the tilt of the
ellipsoid in (X;,X;)

N A 0;
2COV(9,‘, 9_,')
tan2¢ = 22 .
J i 0;~
_ 2pijoio;
2 2
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Correlations - 2D examples

p=0.75
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p= —0.75

p = 0.25
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.p:?

(Quiz time)

® Are x and y correlated?
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(Quiz time)

.p:?

® Are x and y correlated?
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https://en.wikipedia.org/wiki/Correlation_and_dependence
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Error propagation on f(x,y)

2 _ (9F OFN ([ Vix Vay Of |0x
F=\ox” ay ) \ Ve Vi of /Oy
(Q) What if x and y are independent?

(HW) Obtain the error on f (x,y) = C x/y

)
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If Xx and y are uncorrelated (independent),

flz,y) =Cxly => 6f/f =/ (0z/z)? + (6y/y)?

If x and y are 100% (+) correlated, e.g. Y = X

e o act 7 £, ggz =aSx . (d>0)
( f%><d6—x 6;2(5:0(20}?') (ﬁ*> .. . t)/@‘(f

_a6,
=®l(:7'r'2"lffd) =0 H o* G &0
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Weighted average and error

¢ How to combine uncorrelated measurements (x;j, 6;) with different
amount of errors?

X

O

B szz/gzz )

—1/2

; Zil/gf? )

- zn:l/criz
i=1

¢ What will happen if the measurements are correlated?

M

j=1

—1

| M
)/ B DA

j=1

—1

M
. Z V!
j=1 %
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(Ex) to measure S and C from BY — pTp

p* P SpvsCp NS

Cep PRELIMINARY

NN BaBar
0.4 k- g 77  Belle

PR Average

| 1 i 1 |

-0.4 -0.2 0 0.2 0.4

CP
Contours give -2A(In L) = Ax® =1, corresponding to 39.3% CL for 2 dof

30



(Ex) to measure S and C from B° — pTp

-0.17 £0.21 -0.01 £0.16 -0.0012

-0.13 +0.16 0.00 £0.12 0.00033

Let 4 = 1 for BaBar, = 2 for Belle
e Obtain X ) where X1=5Xo=0C

e Calculate the weighted average of S and C, and their errors
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some useful distributions




Basics

Probability density function Characteristic
Distribution f (variable; parameters) function ¢(u) Mean Variance o
1/(b_a,) a<xz<b ibu _ _iau b—a)?
Uniform f(x;a,b) = { c - ath (b—a)”
0 otherwise (b —a)iu 2 12
. . N! r N—r tu\ N
Binomial f(r;N,p) = p'q (g + pe*™) Np Npq
rl(N —r)!

r=0,1,2,.... N; 0<p<1l; qgq=1-0p

v'te Y :
Poisson f(nyv) = T n= 0,1,2,... ; v>0 explv(e"™ —1)] % v
1 :
Normal flxz; p,02) = T exp(—(x — p)?/20°) exp(ipuu — %02u2) L o2
(Gaussian) TVem
—o<r<oo; —oo<u<oco; o>0
Multivariate flx;pu, V) = ! exp [iu U — l’LLTV”UJ] 7] Vi
K V) = 5 2 j
Gaussian (2m)"/ Va4
xexp [—5(x—p)' V7 (x— p)]
—00 < zj < o00; —oo< puj <oo; |[V|[>0
n/2—1_—z/2
X’ f(z;n) = © c ;. z22>0 (1 — 24u) /2 n 2n

21/2(n/2)
33
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Binomial distribution

Given a repeated set of N trials, each of which has probability p of
“success” (hence 1—p of “failure”), what is the distribution of the
number of successes if the N trials are repeated over and over?

Binom(k | N, p) = (%)pk(l — p)N_k, o(k) = \/Var(k) = \/Np(l - D)

where k is the number of success trials

® (Ex) events passing a selection cut, with a fixed total N
Npass
N

o =0n,.../N=+/Np(l—p)/N=+/p(1—-p)/N

e —

34
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Binomial error: an example

What is the uncertainty ca on an asymmetry given by
A = (N1-N2)/(N1 + N2), where N1 + N2 = N is the
(fixed) total # of events obtained in the counting
experiment? Take, e.g., N1 = 80 and N2> = 20.

35



ENES

Poisson distribution

e Limit of Binomial when N — oo and p — 0 with Np = p being finite and fixed

— Poisson distribution

e Hu

Fr(kl) = =, o(k) = Vi

6,30

Normalized in two different ways:

>~ Fe(klw) =1, =1 it
k=0 '

| trdu =1, v Tl
O “1

0 2 4 &6 8 1012 14 16 18 20 22 24

All counting results in HEP are assumed to be Poisson-distributed

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018
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Poisson distribution

0.40 — ,
035t "7 PDF ° A=l
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| Vi
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Gaussian (Normal) distribution

1
o\ 2T

exp(—(x — p)*/20°)

flz;p,0%) =

Pu02(X)
N
S
—

D, ,.(x)
—

|||||||||||||||||||||||||||||||
________________________________



ENES

Gaussian (Normal) distribution

X = TMath::Prob(02,1)

o) )
0.2 1.280
0.1 1.640
0.05 1.960
0.01 2.580
0.001 3.290
10—4 3.890

Area of the tails o outside 40 from the mean of a Gaussian

f(x; u,0)
Q )
1-o 0.3173 lo
4.55 x102 20
/2 /9 2.7 x1073 30
6.3x107° 4o
—{l’, _|2 _5_ 0 ]l_ 2| 3 5.7X 10_7 do
(x-w)/o 2.0x10~? 60

Table 36.1:

distribution.
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Poisson for large u is approximately Gaussian of width 0 = \/ﬁ

0 A
A =10.5
T rlLTl'l'
0 i
A=1.0
H ””mTT
0 4 6
=20

DJW

UJW

] 10
/=40
T*Tqm[ .]“U?TTTT
o 2 4 10 12 14 186
= 8.0
{I]I‘jl._l

If in a counting experiment all
we have is a measurement 7,
we often use this to estimate .

We then draw+/n error bars on
the data.

This is just a convention, and
can be misleading.

(It is still recommended you do
it, however.)

4 6 & 10 12 14 16 18 20 22 24 26 28

A=16.0
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Not all distributions are Gaussian

(Ex) track impact parameter distributions

................................ Mean 0.006:
! ! ! ! ! ! ! RMS 0.01:
Underflow
Overflow !
Integral 1.143e-
- |

Core is approximately i
Gaussian

3

10

1 multiple scattering

* dominant Gaussian core

o rare large scatters, including heavy-  10°
quark decays, nuclear interactions, etc.

10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

‘All models are wrong, but some are useful.” from Box & Draper (1987)

41
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Chi-square(y?) distribution

The x? pdf f(z; n) for continuous random variable z(> 0) with n deg. of freedom:

fl@), X
k=1
n/2-1,—2/2 0.5 1,
cr) — T
f(Z7 n) 2n/2r(n/2) 0.4+ — k:i
0.3 — k=6
n=1,2---=#(d.o.t.) — k=9

Elz) =n, V]z] =2n

e For independent Gaussian r.v. x;(i = 1,--- ,n) each with mean u; and variance
0?2 =", (6 — p)*/o? follows x* pdf with n dof.

e Useful for goodness-of-fit test with method of least squares.

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018 42
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Cauchy (Breit-Wigner) distribution

1 ['/2
x:1I'.xn) =
few (6 T, x0) X - (TR
0.7 | |
E(x), V(z): not well-defined 0.6} 29 =0, 7=05 |
0.5
ro = mode, median 5 041

' = full width at half-maximum %3

0.2f
0.1f

0.0=

e (Ex) invariant mass distribution of strongly-decaying hadrons, e.g. p, K*, ¢,
with I'(= 1/7) being the decay rate

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018
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Why not make your own random variables?

a free & powerful utility: ROOT http://root.cern.ch/

some frequently used random variables by ROOT

® flat on [0,1]
x1 =rl.Rndm();
® Gaussian x2 = r2.Gaus(0.0,1.0);
® Exponential X3 = r8.Exp(1.0);
x4 = r4.Poisson(3.0);
® Poisson
and so on...

44
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Random Exponential Random Poisson
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some theorems, laws...
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the Law of Large Numbers

e Suppose you have a sequence of indep’t random variables x;

with the same mean u

and variances o?

but otherwise distributed “however”
the variances are not too large

N

lim (1/N*)) o7 =0

N—o0 :
=1

Then the average Xy = (1/N) > . x; converges to the true mean u

e (Note) What if the condition (1) is finite but non-zero?

= the convergence is “almost certain” (i.e. the failures have measure zero)

In short, if you try many times, eventually you get the true mean!

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018

(1)
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the Central Limit Theorem

e Suppose you have a sequence of indep’t random variables x;

- with means y; and variances o2

- but otherwise distributed “however”
- and under certain conditions on the variances

The sum S = ) . x; converges to a Gaussian

e (Note) important not to confuse LLN with CLT

- LLN: with enough samples, the average — the true mean
- CLT: if you put enough random numbers into your processor, the
distribution of their average — A(0, 1)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018

(2)
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an example of the CLT at work
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more examples of CLT at work

Distribution of x1 Distribuiton of mu1

haf _ haf
B Entries 100000 20 Entries 10000
i Mean  0.5002 C +Jr Mean  0.5003
- | RMS  0.2886 - _I_ 'I' RMS _ 0.09079
- TR ! T 400f— 'I'.I.'I' .I.'I'_I_
N o[ [ 'I IR ‘ B
200|— T T P R TR A B
= E I o g | l -H-
B ' i J |‘\‘ L i W ' [ 'I' 'I' +
u ‘ | 300[— 'I'
150|— - 4 H
- 200|— t
100|— - +# it
50— 100 __ +++ +++
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u - e Ty .
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more examples of CLT at work
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ENES

the Neyman-Pearson Lemma

For a test of size « of the simple hypothesis H,
to obtain the highest power w.r.t. the simple alternative Hi,
choose the critical region w such that the likelihoot ratio satisfies

P(x|H1)

>
P(x|Ho) — ‘

everywhere in w and is < k elsewhere,
where k is a constant chosen for each pre-determined size «.
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ENES

the Wilk’s theorem

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By S. S. WiLks

By applying the principle of maximum likelihood, J. Neyman and E. S.
Pearson® have suggested a method for obtaining functions of observations for
testing what are called composite statistical hypotheses, or simply composite

! Presented to the American Mathmatical Society, March 26, 1937.

We can summarize in the
Theorem: If a populatz'on with a variate x 1s distributed according to the probabil-

ity function f(z, 6, , 02 - - - 6;), such that optimum estimates 8; of the 0; exist »*~ 0 mol’ row

are distributed in large samples accordzng to (3), thefz when th- "’ ctu re (”
truethat 0; = 6,2 =m+ 1, m 4 2, ... h,the -~ |n Le‘ , witeTe N
t8 given by (2) s, except for terme ~° thl S theOr el uke x> with h — m
degrees of freedom. more on

¢ We will encounter it later when we discuss the “likelihood ratio”
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Freq. vs. Bayes.

A TALE OF TWO STATISTICS ...

Frequentist vs. Bayesian

“Bayes and Frequentism: a particle physicist’'s perspective”
by Louis Lyons, arXiv:1301.1273



Freq. vs. Bayes.

Two approaches

Relative frequency

A, B, ... are outcomes of a repeatable experiment  Frequentist

P(A) — Iim times outcome is A

N—>00 n

Subjective probability
A, B, ... are hypotheses (statements that are true or false)
P(A) = degree of belief that A is true

Frequentist approach is, in general, easy to understand, but
some HEP phenomena are best expressed by subjective prob.,
e.g. systematic uncertainties, prob(Higgs boson exists), ...

Bayesian
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Freq. vs. Bayes.

Bayes’ theorem

From the definition of conditional prob., we have

P(AN B) P(BNA)

PUAIB) = =55 P(A)

and P(B|A) =

ebut P(ANB)=P(BNA)

® therefore,
p(aB) = T g&f 4

® First published (posthumous) by Rev. Thomas Bayes (1702-1761)

I ——

An essay towards solving a problem in the doctrine of chances,
Phil. Trans. R. Soc. 53 (1763) 370.
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Freq. vs. Bayes.

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures ‘

PA) = —— P(B) = %

Whole space

0
‘B P(AIB) = " P(BIA) =

9
P(An B) = i
0 9
P(A) x P(BIA) = X 0 — = P(A N B)
0 0
P(B P(AIB) = X — = P(A B
(B) x P(AIB) @ (AN B)
Bob Cousins, CMS, 2008 = P(BIA) = P(AIB) X P(B) / P(A)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011
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Freq. vs. Bayes.

Frequentist statistics — general philosophy

e In frequentist statistics, probabilities such as
P(SUSY does exist)

P(0.117 < a5 < 0.121)
are either O or 1, but we don’t have the answer

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018
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Freq. vs. Bayes.

Bayesian statistics — general philosophy

e In Bayesian statistics, interpretation of probability is extended to the degree
of belief (i.e. subjective).

e suitable for hypothesis testing (but no golden rule for priors)

probability of the data assuming

hypothesis /7 (the likelihood) . I 1;?& ggc;l;?rlz;litthyé ic.1 Z.t,a

P(Z|H)m(H)
[ P(Z|H)x(H) dH

P(H|Z) =
/

posterior probability, 1.e., \ normalization involves sum
atter seeing the data over all possible hypotheses

e can also provide more natural handling of non-repeatable things:
e.g. systematic uncertainties, P(Higgs boson exists)

Y. Kwon (Yonsei University) Statistical Techniques for HEP (I) Aug. 7-9, 2018

59



Freq. vs. Bayes.

(Ex) Bayesian answer for coin toss

Suppose I stand to win or lose money in a single coin-toss. My companion
gives me a coin to use for the game.

e Do I trust the coin? What is P(faircoin)?

¢ Frequentist answer:

- toss the coin n times

- P(heads) = lim,,_, . (ng/n)

- make a complicated statement about the results, which is only indirectly
about whether the coin is fair ...

e But I can only test the coin with five throws:

- What if I get 4H, 1T?
- Do I trust the coin, or claim that the game is unfair?

e What about Bayesian answer?
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Freq. vs. Bayes.

(Ex) Bayesian answer for coin toss

Priors: a‘bad’ coin

has a 75% probability to show ‘head’

for a ‘“fair’ coin, it’s 50%

Likelihoods: P(4H,1T)|
P(4H,1T|

Posterior:

P(fair|4H, 1T, BG) =

P(fair|BG) = 0.50
P(bad|BG) = 0.50

fair) = 0.1563

bad) = 0.3955

P(4H, 1T|fair) - P(fair| BG)
S P(4H,1T|i) - P(i|BG)

B 0.1563 - 0.50

~0.1563 - 0.50 + 0.3955 - 0.50

= (0.283
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Freq. vs. Bayes.

(Ex) Bayesian answer for coin toss

Priors: a‘bad’ coin

has a 75% probability to show ‘head’

for a ‘“fair’ coin, it’s 50%

Likelihoods: P(4H,1T)|
P(4H,1T|

Posterior:

P(fair]4H, 1T, GG) =

P(fair|GG) = 0.95
P(bad|GG) = 0.05

fair) = 0.1563

bad) = 0.3955

P(4H, 1T|fair) - P(fair| GG)
> . P(4H,1T|i) - P(i|GG)

= 0.88
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Freq. vs. Bayes.

Frequentist or Bayesian?

e While the classic or frequentist approach can lead to a well-defined
probability for a given situation, it is not always usable.

-> In such circumstances one is left with only one option: Bayesian.

e When data are scarce => these two approaches can give somewhat
different predictions,

but given sufficiently large data sample, they give pretty much the
same conclusion. In that case the choice between the two may be
regarded arbitrary.

® Perhaps, we may choose one for the main result, and try the other for
a cross-check.
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