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disclaimers
freely taking from other people’s lecture materials, without 
rigorously citing the references

•just a rough list (from which I composed this lecture mostly) … 

not paying attention to any mathematical rigor at all

It will be impossible to cover “everything” even with the 
allocated time of 150 minutes…

•so, I end up covering just a little fraction of the story, with a 
subjective choice of topics 

Please stop me any time if you don’t follow the story, otherwise 
it will be merely a pointless series of slides.
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Figure 20: Plots of three wrong and one correct result. The results and the errors are quoted on each
plot. References are deliberately not provided. The correct plot that is showing a real signal is listed
in the text.

where NB is the total number of B mesons produced in our data and ϵ is the efficiency for
selecting the NS signal events.

The first error in the result is the statistical error and it depends on the number of events in
the sample and tells the significance of the result. Most experiments require a result be at least
3 statistical error bars from a null result before claiming discovery. The second error is the
systematic error and it is a measure of the stability of the result with changes in the analysis
selection criteria. Evaluating the systematic error is always the most difficult and time consuming
part of any analysis. My personal rule of thumb is that for a result that claims better than 15%
statistical precision, I am suspicious that the systematic error has not been properly evaluated if
the systematic error is quoted to be smaller than the statistical error.

3.5 What Can Go Wrong

In Figure 20 I show plots of four experimental results. Two were published, one is on its way to
being published, and one was retracted before being published. Three of the four are wrong and the
signal that they are supposedly demonstrating evidence for does not exist at a level consistent with the
claims of the analysis. Can you tell which are wrong and which is right? (To protect the guilty, I am
deliberately not going to provide references for the four plots. Each was a measurement of a branching
ratio, and I have quoted the numerical value measured on each plot so that the reader can see the
central value and the errors.)

The point of showing this figure is that it is not at all obvious by looking at the plots which is right
or wrong. One needs to examine the individual analyses in more detail. It is important to ask: What
are the pitfalls? Where do experimenters make mistakes? How can you tell?

In two of the flawed results of Figure 20, my personal opinion is that the selection cuts for a
signal were tuned on the data instead of on MC. In a third result, the mistake was, I believe, a large
background that the experimenters assumed the MC modeled properly and it didn’t.

The correct result is the top left plot of Figure 20 and I have deliberately shown the worst looking
plot from the analysis. The result can be made to look much better with different binning. That is

24

from 1997 TASI lecture by P. Drell

Why bother with stat? How come not?
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what to make sense of mH plots, statistically

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016
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the green & yellow plots

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016



the p0 plots
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Figure 10: Expected and observed local p0 values for a SM Higgs boson as a function of the hypothesized

Higgs boson mass (mH) for the combined analysis and for the
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s = 7 TeV and
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s = 8 TeV data samples

separately. The observed p0 including the e�ect of the photon energy scale uncertainty on the mass

position is included via pseudo-experiments and shown as open circles.
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(Example) T2K result
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FIG. 4. Distribution of invariant mass M
inv

when each event is forced to be reconstructed into two

rings. The data are shown using points with error bars (statistical only) and the MC predictions

are in shaded histograms, corresponding to oscillated ⌫
e

CC signal and various background sources

for sin2 2✓13 = 0.1. The last bin shows overflow entries. The vertical line shows the applied cut at

105 MeV/c2.

To compute the expected number of events at the far detector N exp

SK

, we use the near

detector ⌫
µ

CC interaction rate measurement as normalization, and the ratio of expected

events in the near and far detectors, where common systematic errors cancel. Using Eq. 1,

this can be expressed as:

N exp

SK

=
⇣
Rµ,Data

ND

/Rµ,MC

ND

⌘
·NMC

SK

, (2)

where NMC

SK

is the MC number of events expected in the far detector. Due to the correlation

of systematic errors in the near and far detector samples, Eq. 2 reduces the uncertainty on the

expected number of events. Event rates are computed incorporating three-flavor oscillation

13

PRL	107,	041801	(2011)

T2K	observed	6	candidate	
events	of	νμ	➔	νe	

while	a	background	of	1.5±03	
events	is	expected.	

•How	significant	is	this	signal?	

•How	to	include	the	systematic	
uncertainty	in	the	analysis?	

•What	is	the	relevant	‘limit’	
from	this	result?
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References (a very rough list)
•“Statistical Data Analysis” by Glen Cowan 

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html (lectures at CERN) 

•“Statistical Data Analysis for the Physical Sciences” by Adrian Bevan (2013) 

•Tom Junk @ TRIUMF, July 2009 

•mini-reviews on Probability & Statistics in RPP (PDG) 

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf  

•...

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf


Outline
Basic elements

•some vocabulary 

•Probability axioms 

•some probability distributions 

Two approaches: Frequentist vs. Bayesian

Hypothesis testing

Parameter estimation

Other subjects — “nuisance”, “spurious”, “look elsewhere”
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Basic elements
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some vocabulary
statistics, probability

random variables, PDF, CDF

expectation values

mean, median, mode

standard deviation, variance, covariance matrix

correlation coefficients

weighted average and error

...

!11
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Statistics & Probability
Statistics is largely the inverse problem of probability.

• Probability:
Know parameters of the theory ) predict distributions of possible
experimental outcomes

• Statistics:
Know the outcome of an experiment ) extract information about the
parameters and/or the theory

- Probability is the easier of the two – more straightforward.
- Statistics is what we need as HEP analysts.
- In HEP, the statistics issues often get very complex because we know so much

bout our data and need to incorporate all of what we find.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Probability Axioms

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 4 

A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional probability: 

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 4 
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Kolmogorov (1933)

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 4 

A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional probability: 

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects

!13



Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Note: P(A|B) 6= P(B|A)

Consider an extreme case (with some made-up numbers)

• ⌦: all people
• P(woman) = 50%
• P(pregnant|woman) = 3%
• P(pregnant) = 1.5%
• P(woman|pregnant) = 100%

a consequence of P(A|B) 6= P(B|A)

P(data|theory) 6= P(theory|data)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016

A = King
B = Spade
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Random variables and PDFs
• A random variable is a numerical characteristic assigned to an element of the

sample space; it can be discrete or continuous.

• Suppose outcome of experiments is continuous:

P(x 2 [x, x + dx]) = f(x)dx

) f(x) is the probability density function (PDF) with

Z +1

�1
f(x)dx = 1

• Or, for discrete outcome xi with e.g. i = 1, 2, · · ·

* P(xi) = pi “probability mass function”
*

P
i P(xi) = 1

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Cumulative distribution function (CDF)
• The probability F(x) to have an outcome less than or equal to x is called the

cumulative distribution function (CDF).
Z x

�1
f(x0)dx0 ⌘ F(x) .

Statistical Methods in Particle Physics 11

Cumulative distribution function
Probability to have outcome less than or equal to x is

cumulative distribution function

Alternatively define pdf with

G. Cowan

PDF CDF

CDF

7

• Alternatively, we have f(x) = @F(x)/@x.

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Expectation value
g(X), h(X): functions of random variable X

• for discrete X 2 ⌦

E(g) =
X

⌦

P(X) g(X)

• for continuous X 2 ⌦

E(g) =
Z

⌦
dX f(X) g(X)

• E is a linear operator

E[↵g(X) + �h(X)] = ↵E[g(X)] + �E[h(X)]

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



Examples of expectation values
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some examples of Expectation Values

•
mean – expectation value for the PDF (f(X) or P(Xi))

µ = X = E(X) = hXi =
Z

⌦
dX f(X)X

•
variance – it may not always exist!

�2 = V(X) = E[(X � µ)2]

= E(X2)� [E(X)]2

=

Z

⌦
dX f(X)(X � µ)2

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



sample mean & sample variance
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Outline
• n measurements {xi} where xi follows N(µ,⇥)

• sample mean

x =
1
n

nX

i=1

xi ⇤ N
✓
µ,

⇥⌃
n

◆

With more measurements, the estimation of the mean will become more
accurate.

• sample variance

V(x) =
1
n

nX

i=1

(xi � x)2 = x2 � x2

Sample variance approaches ⇥2 for large n.

Y. Kwon (Yonsei Univ.) B+ � ⌧+⌫⌧ & searches for heavy ⌫ at the B-factories Dec.20, 2012 4

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



Mean and Variance in 2-D
• Expectation value in 2-D: (X,Y) as RV

E[g(X,Y)] =
ZZ

⌦
dX dY f(X,Y) g(X,Y)

) Extension to higher dimension is straightforward!

•
mean of X

µX = E[X] =
ZZ

⌦
dX dY f(X,Y) X

•
variance of X

�2
X = E[(X � µX)

2] =

ZZ

⌦
dX dY f(X,Y) (X � µX)

2

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Covariance matrix
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Covariance matrix

• Given a n-dimensional random variable ~X = (X1, · · · ,Xn), the
covariance matrix Cij is defined as:

Cij = E[(Xi � µi)(Xj � µj)]

= E[XiXj]� µiµj

• more intuitive is the correlation coefficient, ⇢ij, given by

⇢ij =
Cij

�i�j

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



properties of covariance matrix
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properties of covariance matrix
• bounded by one: �1  ⇢ij  +1

• for independent variables X,Y: ⇢(X,Y) = 0
But the reverse is not true! (e.g. Y = X2)

• If f(X1, · · · ,Xn) is a multi-dim. Gaussian, then cov(Xi,Xj) gives the tilt of the
ellipsoid in (Xi,Xj)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



Correlations - 2D examples
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Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



(Quiz time)
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•ρ	=?	
•Are	x	and	y	correlated?

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



(Quiz time)

!25

•ρ	=?	
•Are	x	and	y	correlated?

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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from https://en.wikipedia.org/wiki/Correlation_and_dependence

https://en.wikipedia.org/wiki/Correlation_and_dependence


Error propagation on f(x,y)
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◆

(Q) What if x and y are independent?

(HW) Obtain the error on f (x,y) = C x/y

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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If x and y are uncorrelated (independent),

If x and y are 100% (+) correlated, e.g. y = ↵x

f(x, y) = Cx/y ➔ �f/f =
p

(�x/x)2 + (�y/y)2



Weighted average and error
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x± �

x

=

P
i

x

i

/�

2
iP

i

1/�2
i

±
 

nX

i=1

1/�2
i

!�1/2

How to combine uncorrelated measurements (xj, σj) with different 
amount of errors?

What will happen if the measurements are correlated?

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Exp S C Vij

BaBar -0.17 ±0.21 -0.01 ±0.16 -0.0012

Belle -0.13 ±0.16 0.00 ±0.12 0.00033



some useful distributions

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



35. Probability 9

Table 35.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic

Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x;a, b) =

{

1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu
a + b

2
(b − a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ,σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√

|V |
exp

[

iµ · u − 1
2uT V u

]

µ Vjk

× exp
[

− 1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)

−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1
1F1(α; α + β; iu)

α
α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1

June 18, 2012 16:20
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Binomial distribution
Given a repeated set of N trials, each of which has probability p of 
“success” (hence 1−p of “failure”), what is the distribution of the 
number of successes if the N trials are repeated over and over? 

•(Ex) events passing a selection cut, with a fixed total N

Statistics/Thomas R. Junk/TSI July 2009 7

Some Probability Distributions useful in HEP

Binomial:

   Given a repeated set of N trials, each of which has

   probability p of “success” and 1 - p of “failure”, what is

   the distribution of the number of successes if the N trials

   are repeated over and over?

! 

Binom(k |N, p) =
N

k

" 

# 
$ 

% 

& 
' p

k
1( p( )

N(k
,    )(k) = Var(k) = Np(1( p)

k is the number of “success” trials

Example: events passing a selection cut, with a fixed total N

where k is the number of success trials

✏ =
Npass

N

�✏ = �Npass/N =
p

Np(1� p)/N =
p

p(1� p)/N

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects



Binomial error: an example
What is the uncertainty σA on an asymmetry given by 
A = (N1 - N2)/(N1 + N2), where N1 + N2 = N is the 
(fixed) total # of events obtained in the counting 
experiment? Take, e.g., N1 = 80 and N2 = 20.

!35
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Poisson distribution
• Limit of Binomial when N ! 1 and p ! 0 with Np = µ being finite and fixed

) Poisson distribution

Poisson distribution
• Limit of Binomial when N ! 1 and p ! 0 with Np = µ being finite and fixed

) Poisson distribution

Statistics/Thomas R. Junk/TSI July 2009 8

Some Probability Distributions useful in HEP

Poisson:

Limit of Binomial when N ! " and p ! 0 with Np = µ finite

! 

Poiss(k | µ) =
e
"µµk

k!
     #(k) = µ

All counting results in HEP are assumed to be Poisson

distributed   

Binomial is formally more correct since the

number of bunch crossings and particles per bunch are

finite -- but very large).

! 

Poiss(k | µ)
k= 0

"

# =1,    $µ

! 

Poiss(k | µ)dµ =1
0

"

#       $k

Normalized to

unit area in

two different senses

µ=6

Statistics/Thomas R. Junk/TSI July 2009 8
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All counting results in HEP are assumed to be Poisson-distributed

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016

Normalized in two different ways:

All counting results in HEP are assumed to be Poisson-distributed

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016 !36

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects

Poisson distribution

Y. Kwon (Yonsei University)              Statistical Techniques for HEP (I)                 Aug. 7-9, 2018
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Poisson distribution

CDFPDF

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Gaussian (Normal) distribution

35. Probability 9

Table 35.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic

Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x;a, b) =

{

1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu
a + b

2
(b − a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ,σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√

|V |
exp

[

iµ · u − 1
2uT V u

]

µ Vjk

× exp
[

− 1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)

−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1
1F1(α; α + β; iu)

α
α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1
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Gaussian (Normal) distribution

24 36. Statistics

36.3.2.4. Gaussian distributed measurements:

An important example of constructing a confidence interval is when the data consists
of a single random variable x that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ,

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
(36.55)

is the probability that the measured value x will fall within ±δ of the true value µ. From
the symmetry of the Gaussian with respect to x and µ, this is also the probability for
the interval x ± δ to include µ. Fig. 36.4 shows a δ = 1.64σ confidence interval unshaded.
The choice δ = σ gives an interval called the standard error which has 1 − α = 68.27% if
σ is known. Values of α for other frequently used choices of δ are given in Table 36.1.

$3 $2 $1 0 1 2 3

f (x; µ,%)

! /2! /2

(x$µ) /%

1$!

Figure 36.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by α = 0.1, are as shown.

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 36.1.

The relation (36.55) can be re-expressed using the cumulative distribution function for
the χ2 distribution as

α = 1 − F (χ2; n) , (36.56)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be obtained from Fig. 36.1 on the
n = 1 curve or by using the ROOT function TMath::Prob.

For multivariate measurements of, say, n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one

requires the full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described
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Table 36.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

in Sections 36.1.2 and 36.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore, the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 36.5, corresponding
to a contour χ2 = χ2

min + 1 or ln L = lnLmax − 1/2. The ellipse is centered about the

estimated values θ̂, and the tangents to the ellipse give the standard deviations of the
estimators, σi and σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (36.57)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the distance σi from the
ellipse’s horizontal center-line at which the ellipse becomes tangent to vertical, i.e., at the
distance ρijσi below the center-line as shown. As ρij goes to +1 or −1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, θj , is known from previous
measurements to a precision much better than σj , so that the current measurement
contributes almost nothing to the knowledge of θj . However, the current measurement of
θi and its dependence on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the value of θi, which
minimizes χ2 at a fixed value of θj , such as the PDG best value. This θi value lies along
the dotted line between the points where the ellipse becomes tangent to vertical, and has
statistical error σinner as shown on the figure, where σinner = (1 − ρ2

ij)
1/2σi. Instead of

the correlation ρij , one reports the dependency dθ̂i/dθj which is the slope of the dotted

line. This slope is related to the correlation coefficient by dθ̂i/dθj = ρij ×
σi
σj

.

As in the single-variable case, because of the symmetry of the Gaussian function
between θ and θ̂, one finds that contours of constant lnL or χ2 cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

lnL(θ) ≥ lnLmax − ∆ lnL , (36.58)
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Poisson for large µ is Approximately Gaussian of width

                              

! 

" = µ

If, in an experiment

all we have is a 

measurement n, we

often use that to
estimate µ.

We then draw

error bars on the data.

This is just a convention,

and can be misleading.

(We still recommend you

do it, however)
! 

n

Statistics/Thomas R. Junk/TSI July 2009 15

Poisson for large µ is Approximately Gaussian of width
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" = µ

If, in an experiment

all we have is a 

measurement n, we

often use that to
estimate µ.

We then draw

error bars on the data.

This is just a convention,

and can be misleading.

(We still recommend you

do it, however)
! 

n

Poisson for large 𝜇 is approximately Gaussian of width � =
p
µ

If in a counting experiment all 
we have is a measurement n, 
we often use this to estimate 𝜇.

We then draw        error bars on 
the data.
This is just a convention, and 
can be misleading.
(It is still recommended you do 
it, however.)

p
n
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Not all distributions are Gaussian

Statistics/Thomas R. Junk/TSI July 2009 18

Not all  Distributions are Gaussian

Track impact

parameter

distribution

for example

Multiple 

scattering --

core: Gaussian;

rare large scatters;

heavy flavor, 

nuclear interactions,

decays (taus in 

this example)

“All models are false.  Some 

  models are useful.”

Core is approximately

Gaussian

“All models are wrong, but some are useful.” from Box & Draper (1987)

(Ex) track impact parameter distributions

∃ multiple scattering 
• dominant Gaussian core 
• rare large scatters, including heavy-

quark decays, nuclear interactions, etc.
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Chi-square(�2) distribution
The �2 pdf f(z; n) for continuous random variable z(� 0) with n deg. of freedom:

• For independent Gaussian r.v. xi(i = 1, · · · , n) each with mean µi and variance
�2

i , z =
Pn

i=1(xi � µi)2/�2
i follows �2 pdf with n dof.

• Useful for goodness-of-fit test with method of least squares.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016  42
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Cauchy (Breit-Wigner) distribution

fBW(x; �, x0) =
1
⇡

�/2
(x � x0)2 + (�/2)2

• (Ex) invariant mass distribution of strongly-decaying hadrons, e.g. ⇢, K⇤, �,
with �(= 1/⌧) being the decay rate

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016  43
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Why not make your own random variables?

a free & powerful utility: ROOT   http://root.cern.ch/

some frequently used random variables by ROOT

•flat on [0,1] 

•Gaussian

•Exponential

•Poisson

and so on…

!44

    x1 = r1.Rndm(); 
    x2 = r2.Gaus(0.0,1.0); 
    x3 = r3.Exp(1.0); 
    x4 = r4.Poisson(3.0);

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects

http://root.cern.ch/drupal/
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some theorems, laws...
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the Law of Large Numbers
• Suppose you have a sequence of indep’t random variables xi

- with the same mean µ
- and variances �2

i
- but otherwise distributed “however”
- the variances are not too large

lim
N!1

(1/N2)
NX

i=1

�2
i = 0 (1)

Then the average xN = (1/N)
P

i xi converges to the true mean µ

• (Note) What if the condition (1) is finite but non-zero?
) the convergence is “almost certain” (i.e. the failures have measure zero)

In short, if you try many times, eventually you get the true mean!

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016
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the Central Limit Theorem
• Suppose you have a sequence of indep’t random variables xi

- with means µi and variances �2
i

- but otherwise distributed “however”
- and under certain conditions on the variances

The sum S =
P

i xi converges to a Gaussian

lim
N!1

S �
P

µiqP
�2

i

! N (0, 1) (2)

• (Note) important not to confuse LLN with CLT

- LLN: with enough samples, the average ! the true mean
- CLT: if you put enough random numbers into your processor, the

distribution of their average ! N (0, 1)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016
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The Central Limit Theorem
The sum of many small, uncorrelated random numbers

is asymptotically Gaussian distributed -- and gets more so

as you add more random numbers in.   Independent of

the distributions of the random numbers (as long as they stay

small).
an example of the CLT at work
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more examples of CLT at work
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more examples of CLT at work
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the Neyman-Pearson Lemma
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How to choose an optimal test statistic
• Use Neyman-Pearson lemma

For a test of size ↵ of the simple hypothesis H0,
to obtain the highest power w.r.t. the simple alternative H1,
choose the critical region w such that the likelihoot ratio satisfies

P(~x|H1)

P(~x|H0)
� k

everywhere in w and is < k elsewhere,
where k is a constant chosen for each pre-determined size ↵.

• Equivalently, the optimal scalar test statistic is

t(~x) = P(~x|H1)/P(~x|H0)

(Note) Any monotonic function of this leads to the same test.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016

more on this lemma, in Lecture (II) tomorrow!



the Wilk’s theorem
We will encounter it later when we discuss the “likelihood ratio” ...
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more on this theorem, in Lecture (II) tomorrow!



Frequentist vs. Bayesian
A tale of two statistics …
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“Bayes and Frequentism: a particle physicist’s perspective”  
by Louis Lyons, arXiv:1301.1273



Two approaches
Relative frequency

Subjective probability

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 5 

Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 5 

Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 

Frequentist	approach	is,	in	general,	easy	to	understand,	but	
some	HEP	phenomena	are	best	expressed	by	subjective	prob.,	
e.g.	systematic	uncertainties,	prob(Higgs	boson	exists),	...

Frequentist

Bayesian

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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Bayes’ theorem
From the definition of conditional prob., we have

•but 

•therefore,

•First published (posthumous) by Rev. Thomas Bayes (1702-1761)

An essay towards solving a problem in the doctrine of chances, 
Phil. Trans. R. Soc. 53 (1763) 370.

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 6 

Bayes� theorem 
From the definition of conditional probability we have 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702!1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 

P (A \B) = P (B \A)

P (A|B) =
P (B|A) P (A)

P (B)

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 6 

Bayes� theorem 
From the definition of conditional probability we have 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702!1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 
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Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

... in pictures (from Bob Cousins)

16

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7
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Frequentist statistics – general philosophy

• In frequentist statistics, probabilities such as
P(SUSY does exist)
P(0.117 < ↵s < 0.121)

are either 0 or 1, but we don’t have the answer

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016
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Bayesian statistics – general philosophy
• In Bayesian statistics, interpretation of probability is extended to the degree

of belief (i.e. subjective).

• suitable for hypothesis testing (but no golden rule for priors)

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 8 

Bayesian Statistics ! general philosophy  
In Bayesian statistics, interpretation of probability extended to 
degree of belief (subjective probability).  Use this for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayesian methods can provide more natural treatment of  non- 
repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 

No golden rule for priors (“if-then” character of Bayes’ thm.) 

• can also provide more natural handling of non-repeatable things:
e.g. systematic uncertainties, P(Higgs boson exists)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12–25, 2016
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(Ex) Bayesian answer for coin toss

Suppose I stand to win or lose money in a single coin-toss. My companion
gives me a coin to use for the game.

• Do I trust the coin? What is P(faircoin)?
• Frequentist answer:

- toss the coin n times
- P(heads) = limn!1(nH/n)
- make a complicated statement about the results, which is only indirectly

about whether the coin is fair ...
• But I can only test the coin with five throws:

- What if I get 4H, 1T?
- Do I trust the coin, or claim that the game is unfair?

• What about Bayesian answer?

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 21, 2015
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Priors:

Likelihoods:

Posterior:

P (4H, 1T|fair) = 0.1563

P (4H, 1T|bad) = 0.3955

a	‘bad’	coin	has	a	75%	probability	to	show	‘head’	
for	a	‘fair’	coin,	it’s	50%

P(fair|BG) = 0.50 
P(bad|BG) = 0.50

P (fair|4H, 1T,BG) =
P (4H, 1T|fair) · P (fair|BG)P

i P (4H, 1T|i) · P (i|BG)

=
0.1563 · 0.50

0.1563 · 0.50 + 0.3955 · 0.50 = 0.283

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects
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(Ex) Bayesian answer for coin toss
Priors:

Likelihoods:

Posterior:

P (4H, 1T|fair) = 0.1563

P (4H, 1T|bad) = 0.3955

a	‘bad’	coin	has	a	75%	probability	to	show	‘head’	
for	a	‘fair’	coin,	it’s	50%

P(fair|GG) = 0.95 
P(bad|GG) = 0.05

P (fair|4H, 1T,GG) =
P (4H, 1T|fair) · P (fair|GG)P

i P (4H, 1T|i) · P (i|GG)

Basics Freq.	vs.	Bayes. Hyp.	Testing Param.	Est. Adv.	subjects

= 0.88



!63

•While the classic or frequentist approach can lead to a well-defined 
probability for a given situation, it is not always usable.  

➔ In such circumstances one is left with only one option: Bayesian. 

•When data are scarce ➔ these two approaches can give somewhat 
different predictions, 

but given sufficiently large data sample, they give pretty much the 
same conclusion. In that case the choice between the two may be 
regarded arbitrary. 

•Perhaps, we may choose one for the main result, and try the other for 
a cross-check.

Frequentist or Bayesian?
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