Statistical Techniques for HEP (I)

Youngjoon Kwon (Yonsei U.)

7th School on LHC Physics Aug. 7-9, 2018 @ NCP, Islamabad

disclaimers

freely taking from other people's lecture materials, without rigorously citing the references

•just a rough list (from which I composed this lecture mostly) …

not paying attention to any mathematical rigor at all

- **It will be impossible to cover "everything" even with the allocated time of 150 minutes…**
	- so, I end up covering just a little fraction of the story, with a *subjective* choice of topics

Please stop me any time if you don't follow the story, otherwise it will be merely a pointless series of slides.

Why bother with stat? How come not?

what to make sense of m_H plots, statistically

the green & yellow plots

the p_0 plots

(Example) T2K result PRL 107, 041801 (2011)

T₂K observed 6 candidate events of $v_\mu \rightarrow v_e$ while a background of 1.5 ± 03 events is expected.

- How significant is this signal?
- How to include the systematic uncertainty in the analysis?
- What is the relevant 'limit' from this result?

References (*a very rough list*)

•"Statistical Data Analysis" by Glen Cowan

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html (lectures at CERN)

- •"Statistical Data Analysis for the Physical Sciences" by Adrian Bevan (2013)
- •Tom Junk @ TRIUMF, July 2009
- mini-reviews on Probability & Statistics in RPP (PDG)

<http://pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf>

•...

Part

Parts II & IIIParts II

Outline

Basic elements

- some vocabulary
- Probability axioms
- some probability distributions
- **Two approaches: Frequentist vs. Bayesian**
- **Hypothesis testing**
- **Parameter estimation**
- **Other subjects "nuisance", "spurious", "look elsewhere"**

Basics Freq. vs. Bayes. | Hyp. Testing | Param. Est. | Adv. subjects

Basic elements

some vocabulary

- **statistics, probability**
- **random variables, PDF, CDF**
- **expectation values**
- **mean, median, mode**
- **standard deviation, variance, covariance matrix**
- **correlation coefficients**
- **weighted average and error**

...

Statistics & Probability

Statistics is largely the inverse problem of probability.

• Probability:

Know parameters of the theory \Rightarrow predict distributions of possible experimental outcomes

• Statistics:

Know the outcome of an experiment \Rightarrow extract information about the parameters and/or the theory

- Probability is the easier of the two *more straightforward*.
- Statistics is what we need as HEP analysts.
- In HEP, the statistics issues often get very complex because we know so much bout our data and need to incorporate all of what we find.

Probability Axioms TODADIIILY AAIOIIII A definition of probability Consider a set *S* with subsets *A*, *B*, ...

Consider a set *S* with subsets *A*, *B*, ...

For all $p'(\bar{S}) = \hat{1}^{A}$ ≥ 0 FIF $A \cap B \stackrel{P(S)}{=} \emptyset$, $\overline{P}(A \cup B) = P(A) + P(B)$ If $A \cap B = \emptyset$, $P(A \cup B) = P(A) + P(B)$
 $P(S) = 1$

Kolmogorov (1 Kolmogorov Kolmogorov (1933)

ALSO GOIHIC CONDITION PROBABILITY Also define conditional probability:

$$
P(A|B) = \frac{P(A \cap B)}{P(B)}
$$

$$
P(A|B) = \frac{P(A \cap B)}{P(B)}
$$

$Note: P(A|B) \neq P(B|A)$ $P(A|B) = 1/13 \neq P(B|A) = 1/4$ $A = King$ $B = Spade$

Random variables and PDFs

- *•* A random variable is a numerical characteristic assigned to an element of the sample space; it can be discrete or continuous.
- *•* Suppose outcome of experiments is continuous:

 $P(x \in [x, x + dx]) = f(x)dx$

 \Rightarrow $f(x)$ is the **probability density function** (PDF) with

$$
\int_{-\infty}^{+\infty} f(x)dx = 1
$$

• Or, for discrete outcome x_i with e.g. $i = 1, 2, \cdots$

*
$$
P(x_i) = p_i
$$
 "probability mass function"
* $\sum_i P(x_i) = 1$

Cumulative distribution function (CDF) Cumulative distribution function (Cl

• The probability *F*(*x*) to have an outcome less than or equal to *x* is called the **cumulative distribution function** (CDF). The probability $T(x)$ to have all battome less than or equal α cumulative distribution function (CDF)

$$
\int_{-\infty}^x f(x') dx' \equiv F(x) .
$$

• Alternatively, we have $f(x) = \partial F(x)/\partial x$.

Expectation value

 $g(X)$, $h(X)$: functions of random variable *X*

• for discrete $X \in \Omega$

$$
E(g) = \sum_{\Omega} P(X) g(X)
$$

• for continuous $X \in \Omega$

$$
E(g) = \int_{\Omega} dX f(X) g(X)
$$

• E is a linear operator

$$
E[\alpha g(X) + \beta h(X)] = \alpha E[g(X)] + \beta E[h(X)]
$$

Examples of expectation values Examples of expectation values

mean – expectation value for the PDF ($f(X)$ or $P(X_i)$)

$$
\mu = \overline{X} = E(X) = \langle X \rangle = \int_{\Omega} dX f(X)X
$$

• **variance** – it may not always exist!

$$
\sigma^{2} = V(X) = E[(X - \mu)^{2}]
$$

= $E(X^{2}) - [E(X)]^{2}$
= $\int_{\Omega} dX f(X) (X - \mu)^{2}$

sample mean & sample variance

- *n* measurements $\{x_i\}$ where x_i follows $N(\mu, \sigma)$
- *•* sample mean

$$
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

With more measurements, the estimation of the mean will become more accurate.

• sample variance

$$
V(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \overline{x^2} - \overline{x}^2
$$

Sample variance approaches σ^2 for large *n*.

Mean and Variance in 2-D

• Expectation value in 2-D: (*X, Y*) as RV

$$
E[g(X, Y)] = \iint_{\Omega} dX \, dY f(X, Y) \, g(X, Y)
$$

 \Rightarrow Extension to higher dimension is straightforward!

• **mean** of *X*

$$
\mu_X = E[X] = \iint_{\Omega} dX \, dY f(X, Y) \, X
$$

• **variance** of *X*

$$
\sigma_X^2 = E[(X - \mu_X)^2] = \iint_{\Omega} dX \, dY f(X, Y) \, (X - \mu_X)^2
$$

Covariance matrix Covariance matrix

• Given a *n*-dimensional random variable $\vec{X} = (X_1, \dots, X_n)$, the covariance matrix *Cij* is defined as:

$$
C_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)]
$$

=
$$
E[X_iX_j] - \mu_i\mu_j
$$

• more intuitive is the **correlation coefficient**, ρ_{ij} , given by

$$
\rho_{ij} = \frac{C_{ij}}{\sigma_i \sigma_j}
$$

properties of covariance matrix properties of covariance matrix

- bounded by one: $-1 \leq \rho_{ij} \leq +1$
- for independent variables *X, Y*: $\rho(X, Y) = 0$ *But the reverse is not true!* (e.g. $Y = X^2$)
- If $f(X_1, \dots, X_n)$ is a multi-dim. Gaussian, then $cov(X_i, X_j)$ gives the *tilt* of the ellipsoid in (X_i, X_j)

Correlations - 2D examples

(Quiz time)

 $\rho = ?$ • Are x and y correlated?

(Quiz time)

 $\rho = ?$ • Are x and y correlated?

from https://en.wikipedia.org/wiki/Correlation_and_dependence

Error propagation on *f(x,y)*

$$
\sigma_f^2 = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \left(\begin{array}{cc} V_{xx} & V_{xy} \\ V_{yx} & V_{yy} \end{array}\right) \left(\begin{array}{c} \partial f/\partial x \\ \partial f/\partial y \end{array}\right)
$$

(Q) What if *x* and *y* are independent?

(HW) Obtain the error on $f(x,y) = C x/y$

If *x* and *y* are uncorrelated (independent),

$$
\Rightarrow \nabla_{f}^{2} = (f_{x} + f_{y})(\begin{pmatrix} \frac{\partial_{x}^{2}}{\partial_{y}^{2}} & \frac{\partial_{y}}{\partial_{y}^{2}} \\ \frac{\partial_{y}^{2}}{\partial_{z}^{2}} & \frac{\partial_{z}^{2}}{\partial_{z}^{2}} \end{pmatrix} (\begin{pmatrix} f_{x} \\ f_{y} \end{pmatrix})
$$

$$
f_{x} = \partial f / \partial x, \text{ etc.} = \partial_{x}^{2} (\frac{\partial f}{\partial x})^{2} + \partial_{y}^{2} (\frac{\partial f}{\partial y})^{2}
$$

$$
f(x, y) = Cx/y \Rightarrow \delta f / f = \sqrt{(\delta x / x)^{2} + (\delta y / y)^{2}}
$$

If *x* and *y* are 100% (+) correlated, e.g. $y = \alpha x$

$$
\sigma_{f}^{2} = (f_{x} f_{y})(\frac{G_{x}^{2}}{d\tau_{x}^{2}} \frac{d\sigma_{x}^{2}}{G_{y}^{2} = d^{2}\sigma_{x}^{2}})(f_{y}^{2}) \qquad \begin{cases} f_{x} & \text{if } x \in \mathbb{R} \text{ and } Sx \text{ (d > 0)} \\ f_{y} & \text{if } y = \frac{V_{y}}{G_{y}} \sigma_{y} \\ f_{z} & \text{if } y = \frac{V_{z}}{G_{x}} \sigma_{y} \\ f_{z} & \text{if } y = \frac{V_{z}}{G_{x}} \sigma_{y} \\ f_{z} & \text{if } y = \frac{V_{z}}{G_{x}} \sigma_{y} \\ f_{z} & \text{if } y = \frac{V_{z}}{G_{x}} \sigma_{y} \end{cases}
$$

Weighted average and error

How to combine uncorrelated measurements (x_i, σ_i) **with different amount of errors?**

$$
\overline{x} \pm \sigma_x = \frac{\sum_i x_i / \sigma_i^2}{\sum_i 1 / \sigma_i^2} \pm \left(\sum_{i=1}^n 1 / \sigma_i^2 \right)^{-1/2}
$$

What will happen if the measurements are correlated?

$$
\overline{x} = \left[\sum_{j=1}^{M} V_j^{-1}\right]^{-1} \cdot \left[\sum_{j=1}^{M} V_j^{-1} x_j\right]
$$

$$
V = \left[\sum_{j=1}^{M} V_j^{-1}\right]^{-1}
$$

(Ex) to measure S and C from $B^0 \to \rho^+ \rho^-$

(Ex) to measure S and C from $B^0 \to \rho^+ \rho^-$

Let $j = 1$ for BaBar, $= 2$ for Belle

- Obtain $\vec{X}^{(j)}$ where $X_1 = S$, $X_2 = C$
- Obtain $V = [V_1^{-1} + V_2^{-1}]^{-1}$
- Calculate the weighted average of S and C , and their errors

some useful distributions

Binomial distribution Binomial:

Given a repeated set of *N* trials, each of which has probability *p* of "success" (hence 1−*p* of "failure"), what is the distribution of the number of successes if the *N* trials are repeated over and over?

Given a repeated set of *N* trials, each of which has

Binom(k|N, p) =
$$
\left(\frac{N}{k}\right) p^k (1-p)^{N-k}
$$
, $\sigma(k) = \sqrt{\text{Var}(k)} = \sqrt{Np(1-p)}$

where k is the number of success trials

•(Ex) events passing a selection cut, with a fixed total *^N*

$$
\epsilon = \frac{N_{\text{pass}}}{N}
$$

$$
\sigma_{\epsilon} = \sigma_{N_{\text{pass}}}/N = \sqrt{Np(1-p)}/N = \sqrt{p(1-p)/N}
$$

Binomial error: an example

What is the uncertainty σ*A* **on an asymmetry given by** $A = (N_1 - N_2)/(N_1 + N_2)$, where $N_1 + N_2 = N$ is the **(fixed) total # of events obtained in the counting experiment? Take, e.g.,** $N_1 = 80$ **and** $N_2 = 20$ **.**

distribution Poisson distribution **Some Probability Distributions useful in HEP Poisson distribution**

• Probability Distributions useful in HEP s finite and fixed n robabinty Distr **Some Probability Distributions useful in HEP**

Poisson distribution

Gaussian (Normal) distribution Poisson for Gaussia sian (Normal) distribution

Gaussian (Normal) distribution Taussiall (IVOIIIIal) uk σ is known. Values of α for other frequently used choices of δ are given in Table 36.1.

Table 36.1: Area of the tails α outside $\pm \delta$ from the mean of a Gaussian \mathfrak{u} tion. distribution.

Pasics Freq. vs. Bayes. Hyp. Testing Param. Est. Adv. subjects

 $\overline{\mathcal{L}}$ ∞ imatę l $\overline{}$ ∞ imateli Poisson for large μ is approximately Gaussian of width $\sigma = \sqrt{\mu}$

 $12¹²$

 $\lambda = 16.0$

14 16 18 20 22

 $0.1 -$

 $\lambda = 2.0$

 0.1

a counting experiment a a counting experiments we often use this to estimate μ . If in a counting experiment all we have is a measurement *n*,

 $\frac{1}{2}$ estimate $\sqrt{2}$. data.
bis iust a convention. **And** can be misleading. (It is still recommended you do it, however.) We then draw \sqrt{n} error bars on the data. This is just a convention, and

 ϵ

 ϵ

 ϵ

 ϵ

Not all distributions are Gaussian **Not all Distributions are Gaussian**

(Ex) track impact parameter distributions

nuclear internations, and the com- \ddotsc Tul. Trom Box & Draper (198 *"All models are wrong, but some are useful."* from Box & Draper (1987)

Chi-square(χ^2) distribution

The χ^2 pdf $f(z; n)$ for continuous random variable $z(\ge 0)$ with *n* deg. of freedom:

- For independent Gaussian r.v. $x_i(i = 1, \dots, n)$ each with mean μ_i and variance σ_i^2 , $z = \sum_{i=1}^n (x_i - \mu_i)^2 / \sigma_i^2$ follows χ^2 pdf with *n* dof.
- *•* Useful for *goodness-of-fit* test with method of least squares.

Cauchy (Breit-Wigner) distribution

$$
f_{BW}(x;\Gamma,x_0)=\frac{1}{\pi}\frac{\Gamma/2}{(x-x_0)^2+(\Gamma/2)^2}
$$

 $E(x)$, $V(x)$: not well-defined

 x_0 = mode, median Γ = full width at half-maximum

• (Ex) invariant mass distribution of strongly-decaying hadrons, e.g. ρ , K^* , ϕ , with $\Gamma(= 1/\tau)$ being the decay rate

Why not make your own random variables?

- **a free & powerful utility: ROOT [http://root.cern.ch/](http://root.cern.ch/drupal/)**
- **some frequently used random variables by ROOT**
	- \bullet flat on [0,1]
	- •Gaussian
	- Exponential
	- •Poisson

 $x1 = r1.Rndm();$ $x2 = r2.Gaus(0.0, 1.0);$ $x3 = r3.Exp(1.0);$ $x4 = r4. Poisson(3.0);$

and so on…

Basics Freq. vs. Bayes. | Hyp. Testing | Param. Est. | Adv. subjects,

some theorems, laws...

the Law of Large Numbers

• Suppose you have a sequence of indep't random variables *xi*

- with the same mean *µ*
- and variances σ_i^2
- but otherwise distributed "however"
- the variances are not too large

$$
\lim_{N \to \infty} (1/N^2) \sum_{i=1}^{N} \sigma_i^2 = 0 \tag{1}
$$

Then the average $\bar{x}_N = (1/N) \sum_i x_i$ converges to the true mean μ

- *•* (Note) What if the condition (1) is finite but non-zero?
	- \Rightarrow the convergence is "almost certain" (*i.e.* the failures have measure zero)

In short, if you try many times, eventually you get the true mean!

the Central Limit Theorem

• Suppose you have a sequence of indep't random variables *xi*

- with means μ_i and variances σ_i^2
- but otherwise distributed "however"
- and under certain conditions on the variances

The sum $S = \sum_i x_i$ converges to a Gaussian

$$
\lim_{N \to \infty} \frac{S - \sum \mu_i}{\sqrt{\sum \sigma_i^2}} \to \mathcal{N}(0, 1)
$$
 (2)

- *•* (Note) important not to confuse LLN with CLT
	- **LLN**: with enough samples, the average \rightarrow the true mean
	- **CLT**: if you put enough random numbers into your processor, the distribution of their average $\rightarrow \mathcal{N}(0, 1)$

t_{th} as executed as f_{th} of \mathbf{H} as \mathbf{C} \mathbf{F} as the stage \mathbf{H} small). *an example of the CLT at work*

Statistics/Thomas R. Junk/TSI July 2009

more examples of CLT at work

more examples of CLT at work

• Use **Neyman-Pearson lemma**

the Neyman-Pearson Lemma

For a test of size α of the simple hypothesis H_0 , to obtain the highest power w.r.t. the simple alternative H_1 , choose the critical region *w* such that the likelihoot ratio satisfies

$$
\frac{P(\vec{x}|H_1)}{P(\vec{x}|H_0)} \ge k
$$

everywhere in w and is $\lt k$ elsewhere, where *k* is a constant chosen for each pre-determined size α .

• Equivalently, the optimal scalar test statistic is the optimal scalar x ^{*P*}(*P*) x ^{*m*}) *m*² *more on this lemma, in Lecture (II) tomorrow!*

the Wilk's theorem

We will encounter it later when we discuss the "likelihood ratio" ...

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

BY S. S. WILKS

By applying the principle of maximum likelihood, J. Neyman and E. S. Pearson² have suggested a method for obtaining functions of observations for testing what are called composite statistical hypotheses, or simply composite

…

…

We can summarize in the

Theorem: If a population with a variate x is distributed according to the probabil-
 ity function $f(x, \theta_1, \theta_2 \cdots \theta_h)$, such that optimum estimates $\bar{\theta}_i$ of the θ_i exist m^k ;

are distributed in large samples degrees of freedom.

¹ Presented to the American Mathmatical Society, March 26, 1937.

Frequentist vs. Bayesian *A tale of two statistics …*

"*Bayes and Frequentism: a particle physicist's perspective*" by Louis Lyons, arXiv:1301.1273

Two approaches

Relative frequency $\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\sqrt{2\pi}}$ S Relative freque ¹ Relative frequency

 A, B, \ldots are outcomes of a repeatable experiment $n \rightarrow \infty$ means n *A*, *B*, ... are outcomes of a repeatable experiment **Frequentist**

Subjective probability II. Subjective probability probability probability probability probability probability probability probability
In the contract of the contract

A, *B*, ... are hypotheses (statements that are true or false) **Bayesian** $P(A)$ = degree of belief that A is true

Frequentist approach is, in general, easy to understand, but some HEP phenomena are best expressed by subjective prob., e.g. systematic uncertainti Frequentist approach is, in general, easy to understand, but some HEP phenomena are best expressed by subjective prob., e.g. systematic uncertainties, prob(Higgs boson exists), ...

Bayes' theorem From the definition $P(B)$ **b., we** \cdot •but \bullet the $\overline{D(A|D)}$ • First published (posthumous) by Rev. Thomas (1761) An essay towards solving a problem in the doctrine and the seamer of the *An* essay towards solving a problem in the doctrine and the *An* essay towards solving a problem in the doctrine and the *An* essay towards Phil. Trans. R. Soc. 53 (1763) 370. Bayes theorem From the definition $P(B)$, we and $P(A \cap B) = P(I' \cup A \cap D')$ Bayes the contract of the cont First published (posthumously) by the *FIIII. ITAIIS. K. 50C. 33 (1763) 370.* $P(A \cap B) = P(B \cap A)$ $P(A|B)P(B|A)P(A)P(A)P(A)P(A)P(B|B)P(B|B)P(B|B)$ *P*(*B*) Bayes theorem From the definition of conditional probability we have and $P(A \cap B) = P(B \cap A)$ $F(f)$ (posted $\sum_{i=1}^{n} f(f)$ $P(A|B|A)P(B|A) P(A)$ $P(B)$ $P(B)$ *doctrine of chances*, Philos. Trans. R. Soc. **53** ed (posthumous) by Rev. Thometrical and **1968**

Particle Physics Article Particle Advisible P, Conditional P, and Derivation of Bayes' Theorem in Pictures Basics **Freq. vs. Bayes.** Hyp. Testing Param. Est. Adv. subjects

Frequentist statistics – general philosophy

• In frequentist statistics, probabilities such as *P*(SUSY does exist)

 $P(0.117 < \alpha_s < 0.121)$

are either 0 or 1, but we don't have the answer

Bayesian statistics – general philosophy

- *•* In Bayesian statistics, interpretation of probability is extended to the **degree of belief** (*i.e.* subjective). resian statistics, interpretation of probability is extend **EI** (*i.e.* subjective).
- **•** suitable for hypothesis testing (but no golden rule for priors)

posterior probability, i.e.,

normalization involves sum after seeing the data prior probability, i.e., before seeing the data probability of the data assuming hypothesis *H* (the likelihood) over all possible hypotheses

 θ methods can provide motive θ and θ is non-the natural treatment of θ o provide more natural systematic uncertainties, probability that Higgs boson exists,... *•* can also provide more natural handling of non-repeatable things: *e.g.* systematic uncertainties, *P*(Higgs boson exists)

(Ex) Bayesian answer for coin toss

Suppose I stand to win or lose money in a single coin-toss. My companion gives me a coin to use for the game.

- Do I trust the coin? What is $P(faircoin)$?
- *•* Frequentist answer:
	- toss the coin *n* times
	- $-P(heads) = lim_{n\to\infty}(n_H/n)$
	- make a complicated statement about the results, which is *only indirectly* about whether the coin is fair ...
- *•* But I can only test the coin with five throws:
	- What if I get 4H, 1T?
	- Do I trust the coin, or claim that the game is unfair?
- *•* What about Bayesian answer?

(Ex) Bayesian answer for coin toss

Priors: a 'bad' coin has a 75% probability to show 'head' for a 'fair' coin, it's 50%

 $P(fair|BG) = 0.50$ $P(bad|BG) = 0.50$

Likelihoods: $P(4H, 1T|fair) = 0.1563$ $P(4H, 1T|bad) = 0.3955$

Posterior:

$$
P(\text{fair}|4H, 1T, BG) = \frac{P(4H, 1T|\text{fair}) \cdot P(\text{fair}|BG)}{\sum_{i} P(4H, 1T|i) \cdot P(i|BG)}
$$

$$
= \frac{0.1563 \cdot 0.50}{0.1563 \cdot 0.50 + 0.3955 \cdot 0.50} = 0.283
$$

(Ex) Bayesian answer for coin toss

Priors: a 'bad' coin has a 75% probability to show 'head' for a 'fair' coin, it's 50%

 $P(fair | GG) = 0.95$ $P(bad|GG) = 0.05$

Likelihoods: $P(4H, 1T|fair) = 0.1563$ $P(4H, 1T|bad) = 0.3955$

Posterior:

$$
P(\text{fair} | 4\text{H}, 1\text{T}, \text{GG}) = \frac{P(4\text{H}, 1\text{T} | \text{fair}) \cdot P(\text{fair} | \text{GG})}{\sum_{i} P(4\text{H}, 1\text{T} | i) \cdot P(i | \text{GG})}
$$

$$
= 0.88
$$

Frequentist or Bayesian?

- While the classic or frequentist approach can lead to a well-defined probability for a given situation, it is not always usable.
	- ➔ In such circumstances one is left with only one option: *Bayesian*.
- When data are scarce \rightarrow these two approaches can give somewhat different predictions,

but given sufficiently large data sample, they give pretty much the same conclusion. In that case the choice between the two may be regarded arbitrary.

• Perhaps, we may choose one for the main result, and try the other for a cross-check.