A model of light dark baryons and dark radiation

Deog Ki Hong

Pusan National University, Busan, Korea

February 26, 2019

YuCHE 2019, Yonsei Univ., Seoul

arXiv:1808.10149 and work under progress

Introduction

A model for light DM

Direct detection of light dark baryons

Conclusion and outlook

Dark Matter Paradigms

▶ Most stuffs in the universe are dark. (Planck 2018)

그림: HST

그림: Planck 2018

- ▶ DM has about 5 times the mass density of baryons.
- ▶ Dark but massive (m = ???)
- Can't interact too strongly with QED and QCD
- Doesn't interact too strongly with itself.

- ▶ DM has about 5 times the mass density of baryons.
- ▶ Dark but massive (m = ???)
- Can't interact too strongly with QED and QCD
- Doesn't interact too strongly with itself.

- ▶ DM has about 5 times the mass density of baryons.
- ▶ Dark but massive (m = ???)
- Can't interact too strongly with QED and QCD.
- Doesn't interact too strongly with itself.

- ▶ DM has about 5 times the mass density of baryons.
- Dark but massive (m =???)
- Can't interact too strongly with QED and QCD.
- Doesn't interact too strongly with itself.

WIMP miracle for correct thermal relics

Weakly interacting massive particles (Lee+Weinberg, 1977)

$$\langle \sigma \, v \rangle = \frac{\alpha^2}{m_{\rm DM}^2}$$
 $m_{\rm DM} \sim 100 \,\, {\rm GeV}$

WIMP DM for last 40 years since Lee-Weinberg

Searching for WIMPs

Direct production Direct detection Indirect detection SM SM DM DM SM DM SM DM SM DM SM DM SM Time Time

Search for WIMP DM

Dark Matter Race: CDMS II

Dark Matter Race: XENON1T

Paradigm Shift in DM

Sociology

Dominant paradigm is being challenged.

- Big puzzles
- Great if a solution gives an option for dark matter candidate
- Big ideas:Supersymmetry,extra dimensions...
 - Composite Higgs Model

- Dark matter exists
- Explain on its own
- Perhaps decoupled from other puzzles
- Think outside the WIMP box

theoretically & experimentally

Openning windows for DM

Beyond the WIMP

Lots of activity in recent years:

Theory & Experiment

- Particles are light, because of symmetry. ('t Hooft 1979)
- Mass of spinless particle is protected by the shift symmetry:

$$a \rightarrow a + constant$$
. (axions)

▶ Mass of spin 1 is protected by gauge symmetry.

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \Lambda$$
. (dark photons)

Spin 1/2 dark baryons? Mass is protected by chiral symmetry, but difficult to realize at low energy.

- Particles are light, because of symmetry. ('t Hooft 1979)
- ▶ Mass of spinless particle is protected by the shift symmetry:

$$a \rightarrow a + constant$$
. (axions)

▶ Mass of spin 1 is protected by gauge symmetry.

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \Lambda$$
. (dark photons)

➤ Spin 1/2 dark baryons? Mass is protected by chiral symmetry, but difficult to realize at low energy.

- Particles are light, because of symmetry. ('t Hooft 1979)
- ▶ Mass of spinless particle is protected by the shift symmetry:

$$a \rightarrow a + constant$$
. (axions)

Mass of spin 1 is protected by gauge symmetry.

$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda$$
. (dark photons)

Spin 1/2 dark baryons? Mass is protected by chiral symmetry, but difficult to realize at low energy.

- Particles are light, because of symmetry. ('t Hooft 1979)
- ▶ Mass of spinless particle is protected by the shift symmetry:

$$a \rightarrow a + constant$$
. (axions)

Mass of spin 1 is protected by gauge symmetry.

$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda$$
. (dark photons)

➤ Spin 1/2 dark baryons? Mass is protected by chiral symmetry, but difficult to realize at low energy.

A model for light DM and DR (DKH 2018)

▶ We propose a model for spin 1/2 dark baryons based on dark SU(5) with confining scale $\Lambda=10~{\rm GeV}\sim 1~{\rm TeV}$:

$$m_\chi = 1~{
m MeV} \sim 1~{
m GeV}$$

- ► The mass is protected by chiral symmetry. The SU(5) is confined but chiral symmetry is not spontaneously broken
- ▶ The dark-baryons are neutral but have magnetic moment

$$\mu_\chi = g rac{e}{2m_\chi}, \quad g = \kappa rac{m_\chi^2}{\Lambda^2}, \quad \kappa = \mathcal{O}(1)$$

A model for light DM and DR (DKH 2018)

▶ We propose a model for spin 1/2 dark baryons based on dark SU(5) with confining scale $\Lambda=10~{\rm GeV}\sim 1~{\rm TeV}$:

$$m_\chi = 1~{\rm MeV} \sim 1~{\rm GeV}$$

- ► The mass is protected by chiral symmetry. The SU(5) is confined but chiral symmetry is not spontaneously broken.
- ► The dark-baryons are neutral but have magnetic moment

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g = \kappa \frac{m_{\chi}^2}{\Lambda^2}, \quad \kappa = \mathcal{O}(1)$$

A model for light DM and DR (DKH 2018)

▶ We propose a model for spin 1/2 dark baryons based on dark SU(5) with confining scale $\Lambda=10~{\rm GeV}\sim 1~{\rm TeV}$:

$$m_\chi = 1~{\rm MeV} \sim 1~{\rm GeV}$$

- ► The mass is protected by chiral symmetry. The SU(5) is confined but chiral symmetry is not spontaneously broken.
- ▶ The dark-baryons are neutral but have magnetic moment

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g = \kappa \frac{m_{\chi}^2}{\Lambda^2}, \quad \kappa = \mathcal{O}(1).$$

Dipolar Dark Matter

▶ Dipolar DM (Sigurdson et al 2004)

Dipolar Dark Matter

Our model provides a UV complete model for DDM that explains the small MDM naturally.

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g \sim \frac{m_{\chi}^2}{\Lambda^2} \sim 10^{-2} - 10^{-12},$$

Dipolar Dark Matter

Our model provides a UV complete model for DDM that explains the small MDM naturally.

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g \sim \frac{m_{\chi}^2}{\Lambda^2} \sim 10^{-2} - 10^{-12},$$

Our model has DR and also very light dark axion.

ightharpoonup Consider SU(5) gauge theory with dark quarks.

	SU(5)	$SU(2)^f$	$SU(2)^{as}$	$\mathrm{U}(1)_B$	$\mathrm{U}(1)_A$	$\mathrm{U}(1)_{\mathrm{em}}$
q_i^a			1	1/5	q_f	2/5
Q_{ij}^{lpha}		1		2/5	q_{as}	-1/5
χ^{a}	1		1	1	q_f+2q_{as}	0

▶ The model has $G_f \otimes G_{as}$ chiral symmetries

$$G_f = \mathrm{SU}(2)_L^f \otimes \mathrm{SU}(2)_R^f, \quad G_{as} = \mathrm{SU}(2)_L^{as} \otimes \mathrm{SU}(2)_R^{as}$$

ightharpoonup Consider SU(5) gauge theory with dark quarks.

	SU(5)	$SU(2)^f$	$SU(2)^{as}$	$\mathrm{U}(1)_B$	$\mathrm{U}(1)_{\mathcal{A}}$	$\mathrm{U}(1)_{\mathrm{em}}$
q_i^a			1	1/5	q_f	2/5
Q_{ij}^{lpha}	В	1		2/5	q_{as}	-1/5
χ^{a}	1		1	1	q_f+2q_{as}	0

▶ The model has $G_f \otimes G_{as}$ chiral symmetries:

$$G_f = \mathrm{SU}(2)_I^f \otimes \mathrm{SU}(2)_R^f, \quad G_{as} = \mathrm{SU}(2)_I^{as} \otimes \mathrm{SU}(2)_R^{as}$$

The chiral symmetry of decuplet Q_{ij}^{α} is spontaneously broken at $\Lambda \sim \text{confinement scale}$:

$$\left\langle Q_{\alpha} \bar{Q}_{\beta} \right\rangle = \Lambda^{3} \delta_{\alpha\beta} : \quad \mathrm{SU}(2)_{L}^{as} \otimes \mathrm{SU}(2)_{R}^{as} \mapsto \mathrm{SU}(2)_{V} \,,$$

- $ightharpoonup \mathrm{U}(1)_A$ is non-anomalous and spontaneously broken.
- There are 4 Nambu-Goldstone bosons: π^A (A=1,2,3), a_0 assuming $m_U \ll m_D$:

$$m_a = \frac{f_\pi m_\pi}{f_a/6} \cdot \frac{\sqrt{m_U m_D}}{m_U + m_D} \ll m_\pi$$

► The chiral symmetry of decuplet Q_{ij}^{α} is spontaneously broken at $\Lambda \sim \text{confinement scale}$:

$$\left\langle Q_{\alpha} \bar{Q}_{\beta} \right\rangle = \Lambda^{3} \delta_{\alpha\beta} : \quad \mathrm{SU}(2)^{as}_{L} \otimes \mathrm{SU}(2)^{as}_{R} \mapsto \mathrm{SU}(2)_{V} \,,$$

- $ightharpoonup {
 m U}(1)_A$ is non-anomalous and spontaneously broken.
- There are 4 Nambu-Goldstone bosons: π^A (A=1,2,3), a, assuming $m_U \ll m_D$:

$$m_a = \frac{f_\pi m_\pi}{f_a/6} \cdot \frac{\sqrt{m_U m_D}}{m_U + m_D} \ll m_\pi$$

The chiral symmetry of decuplet Q_{ij}^{α} is spontaneously broken at $\Lambda \sim \text{confinement scale}$:

$$\left\langle Q_{\alpha} \bar{Q}_{\beta} \right\rangle = \Lambda^{3} \delta_{\alpha\beta} : \quad \mathrm{SU}(2)^{as}_{L} \otimes \mathrm{SU}(2)^{as}_{R} \mapsto \mathrm{SU}(2)_{V} \,,$$

- $ightharpoonup \mathrm{U}(1)_A$ is non-anomalous and spontaneously broken.
- ► There are 4 Nambu-Goldstone bosons: π^A (A = 1, 2, 3), a, assuming $m_U \ll m_D$:

$$m_a = rac{f_\pi m_\pi}{f_a/6} \cdot rac{\sqrt{m_U m_D}}{m_U + m_D} \ll m_\pi$$
 .

Dark axion decays into two photons:

$$\mathcal{L}_{\mathsf{a}\gamma\gamma} = \frac{\mathsf{c}_{\gamma}}{32\pi^2} \cdot \frac{\mathsf{6} \mathsf{a}}{\mathsf{f}_{\mathsf{a}}} \, \mathsf{F}_{\mu\nu} \, \tilde{\mathsf{F}}^{\mu\nu} \, ,$$

$$\Gamma_{a \to \gamma \gamma} = \frac{g_{a \gamma}^2 m_a^3}{64 \pi} \simeq 5 \times 10^{-22} \, \mathrm{s}^{-1} \left(\frac{m_a}{10^{-3} \, \mathrm{eV}} \right)^3 \cdot \left(\frac{1 \, \mathrm{TeV}}{f_a} \right)^2$$

Dark axion decays into two photons:

$$\mathcal{L}_{\mathsf{a}\gamma\gamma} = rac{c_{\gamma}}{32\pi^2} \cdot rac{\mathsf{6} \mathsf{a}}{f_{\mathsf{a}}} \, F_{\mu
u} ilde{\mathcal{F}}^{\mu
u} \, ,$$

Life time of dark axions, $g_{a\gamma} = 216\alpha/5\pi f_a$:

$$\Gamma_{a\to\gamma\gamma} = \frac{g_{a\gamma}^2 m_a^3}{64\pi} \simeq 5 \times 10^{-22} \, \mathrm{s}^{-1} \left(\frac{m_a}{10^{-3} \, \mathrm{eV}}\right)^3 \cdot \left(\frac{1 \, \mathrm{TeV}}{f_a}\right)^2 \,,$$

- ▶ The dark-axions with $m_a < 1.6 \times 10^{-2} \ {\rm eV}$ live longer than the age of the universe for $f_a = 1 \ {\rm TeV}$.
- Since they couple to SM particles at one-loop, unless $m_a > \mathcal{O}(1) \text{ keV}$, from the stellar cooling constraints

$$f_a \sim \Lambda > 3 \times 10^5 \text{ GeV}$$
,

Light dark baryons

- The chiral symmetry of q_i^{α} is NOT spontaneously broken, however, by 't Hooft anomaly matching.
- The flavor anomalies of q_i^{α} is saturated in IR by massless spin 1/2 chimera baryons:

$$\chi^a \sim \epsilon_{\alpha\beta} q_i^a Q_{jk}^\alpha Q_{lm}^\beta \epsilon^{ijklm}$$

Light dark baryons

- The chiral symmetry of q_i^{α} is NOT spontaneously broken, however, by 't Hooft anomaly matching.
- ▶ The flavor anomalies of q_i^{α} is saturated in IR by massless spin 1/2 chimera baryons:

$$\chi^{\mathsf{a}} \sim \epsilon_{\alpha\beta} q_{i}^{\mathsf{a}} Q_{jk}^{\alpha} Q_{lm}^{\beta} \epsilon^{ijklm} \,,$$

Light dark baryons

▶ The coefficients of the UV and IR anomalies match,

$$A_{\mathrm{UV}}^{ab} = \frac{1}{5} \cdot 5 \operatorname{Tr} \left(\tau^a \tau^b \right), \quad A_{\mathrm{IR}}^{ab} = 1 \cdot \operatorname{Tr} \left(\tau^a \tau^b \right) \,,$$

$$U(1)_B$$
 $V(1)_B$
 $V(1)_B$
 $V(1)_B$

Mass and magnetic moment of chimera baryons

▶ Dark (chimera) baryons are massless in the chiral limit:

$$m_{\chi} \sim m_q \ll \Lambda$$

The dark-baryons are neutral but have magnetic dipole moment for $m_r \neq 0$ with $\kappa = \mathcal{O}(1)$:

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g = \kappa \frac{m_{\chi}^2}{\Lambda^2},$$

Dark-baryons in our model belongs to dipolar DM but with naturally small magnetic moments.

Mass and magnetic moment of chimera baryons

▶ Dark (chimera) baryons are massless in the chiral limit:

$$m_\chi \sim m_q \ll \Lambda$$

► The dark-baryons are neutral but have magnetic dipole moment for $m_a \neq 0$ with $\kappa = \mathcal{O}(1)$:

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g = \kappa \frac{m_{\chi}^2}{\Lambda^2},$$

Dark-baryons in our model belongs to dipolar DM but with naturally small magnetic moments.

Mass and magnetic moment of chimera baryons

Dark (chimera) baryons are massless in the chiral limit:

$$m_\chi \sim m_q \ll \Lambda$$

The dark-baryons are neutral but have magnetic dipole moment for $m_a \neq 0$ with $\kappa = \mathcal{O}(1)$:

$$\mu_{\chi} = g \frac{\mathrm{e}}{2m_{\chi}}, \quad g = \kappa \frac{m_{\chi}^2}{\Lambda^2},$$

Dark-baryons in our model belongs to dipolar DM but with naturally small magnetic moments.

- ► In the early universe the (electrically charged) dark quarks are in thermal equilibrium with SM particles.
- ▶ When the dark SU(5) colors confine, the dark baryons are formed and freeze out at $T_f < \Lambda$:

$$\langle n\sigma v \rangle_{T_f} = H$$

▶ The freezeout temperature T_f or $x_f \equiv m_\chi/T_f$ is

$$x_f \simeq \ln \left[A / \sqrt{\ln A} \right]$$

where $A = 0.038 \sqrt{g_*} m_{pl} m_V \langle \sigma v \rangle$.

- ► In the early universe the (electrically charged) dark quarks are in thermal equilibrium with SM particles.
- ▶ When the dark SU(5) colors confine, the dark baryons are formed and freeze out at $T_f < \Lambda$:

$$\langle n\sigma v \rangle_{T_f} = H$$

▶ The freezeout temperature T_f or $x_f \equiv m_\chi/T_f$ is

$$x_f \simeq \ln \left[A / \sqrt{\ln A} \right]$$

where $A = 0.038 \sqrt{g_*} m_{pl} m_{\chi} \langle \sigma v \rangle$.

- ► In the early universe the (electrically charged) dark quarks are in thermal equilibrium with SM particles.
- ▶ When the dark SU(5) colors confine, the dark baryons are formed and freeze out at $T_f < \Lambda$:

$$\langle n\sigma v \rangle_{T_f} = H$$

▶ The freezeout temperature T_f or $x_f \equiv m_\chi/T_f$ is

$$x_f \simeq \ln \left[A / \sqrt{\ln A} \right]$$

where $A = 0.038 \sqrt{g_*} m_{pl} m_{\chi} \langle \sigma v \rangle$.

▶ The annihilation process (c) of dark baryons to give with $N_{ ext{eff}} = \sum_f Q_f^2$

$$\sigma_{\chi\bar{\chi}\to f\bar{f}} v \simeq N_{\text{eff}} \alpha \mu_{\chi}^{2}$$

$$\bar{\chi}$$

$$\bar{\chi}$$

$$\bar{\chi}$$

$$(a)$$

$$(b)$$

$$(c)$$

The mass and the confining scale are chosen to give correct thermal relic density $(A = 0.038\sqrt{g_*} m_{pl} m_\chi \langle \sigma v \rangle)$,

$$\Omega_\chi h^2 = 2.1 imes 10^4 \left(rac{m_\chi}{m_e}
ight) \, \mathrm{ln} \left(A / \sqrt{\mathrm{ln} \, A}
ight) / A = 0.12 \, .$$

	$\Lambda=1~{ m TeV}$	$\Lambda=10~{ m GeV}$
m_χ	$\sim 1~{ m MeV}$	$\sim 1~{ m GeV}$
g-factor	10^{-12}	10^{-2}
$\sigma_{\chi e}$	$10^{-48}{ m cm}^2$	$10^{-36}{ m cm}^2$

Up dark baryon as Dark radiation

- ▶ Up dark-baryon can be made very light or massless by taking $m_q = (m_u \approx 0, m_d)$.
- In the chiral limit the Pauli form factor $F_2(q^2)=0$ and thus the magnetic dipole moment $\mu_\chi=F_2(0)$ vanishes: but light dark-baryons still couple to SM particles, since the Dirac form factors $F_1(q^2)\neq 0$ though $F_1(0)=0$:

$$\frac{e\,c_d}{\Lambda^2}\bar{\chi}\gamma_\mu\chi\partial_\nu F^{\mu\nu}\;;\quad \frac{e^2c_d}{\Lambda^2}\bar{\chi}\gamma^\mu\chi\,\bar{\psi}_e\gamma_\mu\psi_e$$

Up dark baryon as Dark radiation

- ▶ Up dark-baryon can be made very light or massless by taking $m_q = (m_u \approx 0, m_d)$.
- In the chiral limit the Pauli form factor $F_2(q^2)=0$ and thus the magnetic dipole moment $\mu_\chi=F_2(0)$ vanishes: but light dark-baryons still couple to SM particles, since the Dirac form factors $F_1(q^2)\neq 0$ though $F_1(0)=0$:

$$\frac{e c_d}{\Lambda^2} \bar{\chi} \gamma_\mu \chi \partial_\nu F^{\mu\nu}; \quad \frac{e^2 c_d}{\Lambda^2} \bar{\chi} \gamma^\mu \chi \, \bar{\psi}_e \gamma_\mu \psi_e$$

Up dark baryon as Dark radiation

▶ The thermal equilibrium process for dark radiation:

그림: A thermal equilibrium process for $m_{\chi} < m_e$.

Dark radiation

▶ The ratio of the interaction rate to the expansion rate

$$\frac{\Gamma_{int}}{H} \sim \frac{e^4 c_d^2 T^5 / \Lambda^2}{T^2 / m_{pl}} = \left(\frac{T}{T_\chi}\right)^3 \,,$$

where the decoupling temperature of massless dark-baryons

$$T_{\chi} \simeq 0.06 \,\,\, \mathrm{GeV} \, \left(\frac{\sqrt{c_d} \, \Lambda}{1 \,\, \mathrm{GeV}} \right)^{4/3} \,.$$

▶ The contribution to the radiation energy (g = 4)

$$\Delta \textit{N}_{\rm eff} = \frac{13.56}{g_*^s (\textit{T}_{_{\it{V}}})^{4/3}} \cdot \textit{g} \lesssim 0.12 \quad {\rm for} \quad \Lambda \gtrsim 3 \ {\rm GeV}$$

Dark radiation

▶ The ratio of the interaction rate to the expansion rate

$$\frac{\Gamma_{int}}{H} \sim \frac{e^4 c_d^2 T^5 / \Lambda^2}{T^2 / m_{pl}} = \left(\frac{T}{T_\chi}\right)^3 \,,$$

where the decoupling temperature of massless dark-baryons

$$T_{\chi} \simeq 0.06 \,\,\, \mathrm{GeV} \, \left(\frac{\sqrt{c_d} \, \Lambda}{1 \,\, \mathrm{GeV}} \right)^{4/3} \,.$$

▶ The contribution to the radiation energy (g = 4)

$$\Delta \textit{N}_{\rm eff} = \frac{13.56}{g_*^s (\textit{T}_{_{\it{V}}})^{4/3}} \cdot \textit{g} \lesssim 0.12 \quad {\rm for} \quad \Lambda \gtrsim 3 \ {\rm GeV}$$

Dark radiation

▶ The ratio of the interaction rate to the expansion rate

$$\frac{\Gamma_{int}}{H} \sim \frac{e^4 c_d^2 T^5 / \Lambda^2}{T^2 / m_{pl}} = \left(\frac{T}{T_\chi}\right)^3 \,,$$

where the decoupling temperature of massless dark-baryons

$$T_{\chi} \simeq 0.06 \,\,\, \mathrm{GeV} \, \left(\frac{\sqrt{c_d} \, \Lambda}{1 \,\, \mathrm{GeV}} \right)^{4/3} \,.$$

▶ The contribution to the radiation energy (g = 4)

$$\Delta N_{\mathrm{eff}} = \frac{13.56}{g_*^s (T_{\scriptscriptstyle \chi})^{4/3}} \cdot g \lesssim 0.12 \quad \mathrm{for} \quad \Lambda \gtrsim 3 \,\,\mathrm{GeV} \,.$$

Results of light Dark-baryon model

Our model accommodates DDM, DR and dark-axions with

$$\Omega_m h^2 \sim 0.12, \quad \Delta N_{\rm eff} \sim 0.1$$

$\Lambda = 1 - 10^{-2} \text{ TeV}$	$\Lambda=200~{\rm MeV}$	$\Lambda \gtrsim 10^7~{\rm GeV}$
pprox 0	×	pprox 0
$\sim 1-10^3~{\rm MeV}$	$10 \mathrm{eV}$	×
$\times (> \text{keV})$	$\times (> \text{keV})$	$\lesssim 10~{\rm eV}$
	≈ 0 $\sim 1-10^3~{\rm MeV}$	$\sim 1-10^3~{\rm MeV}~~10~{\rm eV}$

Direct detection of light dark baryons

The sensitivity drops rapidly for nuclear recoil if $m_D < 1 \text{ GeV}$.

Direct detection of light dark baryons

▶ Light DM of $m_D < 1 \text{ GeV}$ do scatter off electrons instead!

Direct detection of light dark baryons

Maximum electron kinetic energy

$$E_{\rm e} \leq rac{1}{2} m_{\chi} v_{\chi}^2 \lesssim 3 \, {
m eV} \left(rac{m_{\chi}}{
m MeV}
ight)$$

Cross sections for light dipolar DM:

$$\begin{split} \frac{\mathrm{d}\sigma_{\chi e}}{\mathrm{d}\Omega} &= \frac{\alpha^2 g^2}{m_\chi^2} F\!\left(\theta, \frac{m_e}{m_\chi}\right) \\ \sigma_{\chi e} &\sim 10^{-36} - 10^{-48}~\mathrm{cm}^2 \\ \left(m_\chi = 1~\mathrm{GeV} - 1~\mathrm{MeV}\right) \end{split}$$

Scattering Reach (Community Report 2017)

- We propose a model for light dipolar DM, based on SU(5).

$$m_{\chi} = 1 \text{ MeV} - 1 \text{ GeV}: \quad \Lambda = 1 - 10^{-2} \text{ TeV}$$

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g \approx \left(\frac{m_{\chi}}{\Lambda}\right)^2 = 10^{-2} - 10^{-12}.$$

- ▶ We propose a model for light dipolar DM, based on SU(5).
- The model supports (almost) massless dark baryons:

$$m_\chi = 1~{
m MeV} - 1~{
m GeV}: ~\Lambda = 1 - 10^{-2}~{
m TeV}$$

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g \approx \left(\frac{m_{\chi}}{\Lambda}\right)^2 = 10^{-2} - 10^{-12}$$

- ▶ We propose a model for light dipolar DM, based on SU(5).
- The model supports (almost) massless dark baryons:

$$m_{\chi} = 1 \text{ MeV} - 1 \text{ GeV}: \quad \Lambda = 1 - 10^{-2} \text{ TeV}$$

Dark baryons carry a naturally small magnetic moment

$$\mu_{\chi} = g \frac{e}{2m_{\chi}}, \quad g \approx \left(\frac{m_{\chi}}{\Lambda}\right)^2 = 10^{-2} - 10^{-12}.$$

▶ They are within the reach, $\sigma_{\chi e} \sim 10^{-36} - 10^{-48}\,\mathrm{cm}^2.$

	$\Lambda = 1~{\rm TeV}$	$\Lambda = 10~{\rm GeV}$
χu	≈ 0	≈ 0
χ_{d}	$\sim 1~{ m MeV}$	$\sim 1~{\rm GeV}$
g-factor	10^{-12}	10^{-2}
$\sigma_{\chi e}$	$10^{-48}{\rm cm}^2$	$10^{-36}{ m cm}^2$