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 No (solid) observation of DM signatures via non-gravitational interactions

Many searches designed under WIMP/minimal dark sector scenarios 

 Just excluding more parameter space in DM models

LZ-TDR (2017)CMS (2014)
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 (Mainly) focusing on “Non-relativistic” weakly interacting massive particles 

(WIMPs) search

𝜒 𝜒

N

 Erecoil ~ mv2

~ 1 – 100 keV

(v/c ~ 10-3)

 Detectors 

designed to be 

sensitive to 

this E range

 No solid observation of WIMP signals

 A wide parameter respace already excluded

 Close to the neutrino “floor”

 Need new ideas!

LZ-TDR (2017)

[Goodman, Witten (1985)] 

 Elastic scattering of

 Non-relativistic

 Weak-scale DM

 with nuclei 
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 Erecoil ~ mv2

~ 1 – 100 keV

(v/c ~ 10-3)

 Detectors 

designed to be 

sensitive to 

this E range
LZ-TDR (2017)

[Goodman, Witten (1985)] 

 Elastic scattering of

 Non-relativistic

 Weak-scale DM

 with nuclei 
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Other

or electron

 No solid observation of WIMP signals

 A wide parameter respace already excluded

 Close to the neutrino “floor”

 Need new ideas!
Time to change our point of view?!
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 DM coming from the universe with 𝐸 > 𝐸𝑡ℎ in ν-detectors 

 Model building: right DM relic abundance & DM boosting mechanism

What if DM has a relativistic velocity?
[Agashe, Cui, Necib, Thaler (2014)]



 DM coming from the universe with 𝐸 > 𝐸𝑡ℎ in ν-detectors 

 Model building: right DM relic abundance & DM boosting mechanism

 Multi-component model: [Belanger & JCP, 1112.4491; Kong, Mohlabeng, JCP, 1411.6632; 

Kim, JCP, Shin, 1702.02944; Aoki & Toma, 1806.09154; etc.] 

 Semi-annihilation model: [D’Eramo & Thaler, 1003.5912]

 Decaying multi-component DM: [Bhattacharya et al., 1407.3280; Kopp, Liu, Wang, 1503.02669]

 High velocity (semi-relativistic) DM

- Anti-DM from DM-induced nucleon decay in the Sun: [Huang & Zhao, 1312.0011]

- Energetic cosmic-ray induced DM: [Yin, 1809.08610; Bringmann & Pospelov, 1810.10543; 

Ema, Sala, Sato, 1811.00520]

What if DM has a relativistic velocity?
[Agashe, Cui, Necib, Thaler (2014)]
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 Heavier relic 𝜒0: hard to detect it due to tiny

coupling to SM

 Lighter relic 𝜒1: hard to detect it due to small relic
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𝜒1: Negligible, Non-relativistic thermal relic
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𝜒0𝜒0 → 𝜒1𝜒1 (Current universe): Relativistic!!  (γ1=m0/m1)

(Note that thermal relic 𝜒1 is non-relativistic.)

[Agashe, Cui, Necib, Thaler (2014)]

G. Belanger, JCP (2011)
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(cf. 𝜒𝜒 → 𝛾𝛾, 𝜈𝜈)



 Flux of boosted 𝜒1 near the earth

 Setting 𝜎𝑣 𝜒0𝜒0→𝜒1𝜒1~10
−26 cm3s−1 and assuming the NFW DM halo profile, 

one can obtain ℱ𝜒1~10
−6~8cm−2s−1 for 𝜒0 of weak-scale mass, 𝑚0~O(10-100 GeV).

 Low flux No sensitivity in conventional DM direct detection experiments 

 Large volume (neutrino) detectors

motivated: SK/HK/KNO, DUNE, IceCube, …

ℱ𝜒1 ∝
𝜎𝑣 𝜒0𝜒0→𝜒1𝜒1

𝑚0
2

HK/KNO

from the number density of DM 𝜒0, n0=ρ0/m0

DUNE

(cf. 𝜒𝜒 → 𝛾𝛾, 𝜈𝜈)
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 Sources

 GC: Agashe et al. (2014); Necib et al. (2016); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.

 Sun: Berger et al. (2014); Kong, Mohlabeng, JCP (2014); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.

 Dwarf galaxies: Necib et al (2016)

from the number density of DM 𝜒0, n0=ρ0/m0

HK/KNO

DUNE

(cf. 𝜒𝜒 → 𝛾𝛾, 𝜈𝜈)



 Total number of signal events:

HK/KNO
HK/KNO

5 year construction + 10 year running             vs             10 year construction + 3 year running

H. Alhazmi, KC Kong, G. Mohlabeng & JCP (2016)

0 0

Nsig vs NBG

 Vertical edge: EMax > Eth, Horizontal edge: Nsig~NtargetΔT & nDM~ρDM/mDM

DUNE
DUNE



 2σ sensitivities for 13 years of data
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H. Alhazmi, KC Kong, G. Mohlabeng & JCP (2016)

HK/KNO

 Point-like source  Efficient background reduction! 

 θC ~ θres (cf. GC: θC ~ max{10o, θres}) ~θres
2

Nsig vs NBG

DUNE
HK/KNO

DUNE



SK Collaboration, PRL (2018)
MA (GeV)

mB=200 MeV, mX=20 MeV, g’=0.5
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 𝜒2: a heavier (unstable) dark-sector state

 Flavor-conserving elastic scattering (eBDM)

 Flavor-changing inelastic scattering (iBDM)

ℒint ∋ −
𝜖

2
𝐹𝜇𝜈𝑋

𝜇𝜈 + 𝑔11 ҧ𝜒1𝛾
𝜇𝜒1𝑋𝜇 + 𝑔12 ҧ𝜒2𝛾

𝜇𝜒1𝑋𝜇 + ℎ. 𝑐.

𝑋, γ

𝜒1(𝜒2)

𝜒1

𝑔12
(𝑔12, 𝜇χ)



Kim, JCP & Shin, PRL (2017)

Giudice, JCP, et al., PLB (2018)

ℒint ∋ (𝜇χ/2) ҧ𝜒2σ
𝜇𝜈𝜒1𝐹𝜇𝜈 + ℎ. 𝑐.

 Various models conceiving BDM signatures

 Source: GC, Sun (capture), dwarf galaxies, etc.

 Mechanism: assisted freeze-out, semi-annihilation, decaying, cosmic-ray induced DM, etc.

 Portal: vector portal, scalar portal, etc.

 DM spin: fermionic DM, scalar DM, etc.

 iBDM-inducing operators: two chiral fermions, two real scalars, dipole moment interactions, etc.
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𝑝/𝑒−

 eBDM: elastic scattering 

 only e/p-recoil  single track

𝜒1

𝜒1

𝜒0

𝜒0

Primary signature: (quasi-

elastic) e/p-scattering (& DIS)

Detector



𝑝/𝑒−

𝑝/𝑒−
𝑒−

𝑒+

𝑒−

𝑒+𝑝/𝑒−

 eBDM: elastic scattering or loose 2nd signature

 only e/p-recoil  single track

 iBDM: “Prompt” inelastic scattering 

 e/p-recoil + e+e- pair  three tracks

 iBDM: “Displaced” inelastic scattering 

 e/p-recoil + e+e- pair (typically from a three-

body decay of 𝜒2)  three tracks

 Tracks will pop-up inside the fiducial volume

𝜒1

𝜒1

𝜒0

𝜒0

Secondary signatures: 

𝑒+𝑒−, 𝜇+𝜇−, 𝜋+𝜋−, 𝛾, … (by 𝛿𝑚)

Primary signature: (quasi-

elastic) e/p-scattering (& DIS)

𝜒2

Detector



 DM direct detection experiments: by pumping up the BDM flux with sub-GeV 𝑚0

 Theoretical study:  [G. Giudice, D. Kim, JCP, S. Shin, 1712.07126] ℱ𝜒1 ∝
𝜎𝑣 𝜒0𝜒0→𝜒1𝜒1

𝑚0
2
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 Surface ν experiments (cosmic-ray backgrounds)

 ProtoDUNE:  [Chatterjee, De Roeck, Kim, Moghaddam, JCP, Shin, Whitehead, Yu, 1803.03264]

Proposal submitted to ProtoDUNE collaboration (1st new physics search @ ProtoDUNE)

 Short-Baseline Neutrino (SBN) program: ICARUS, MicroBooNE, SBND

eBDM search using Earth Shielding @ ProtoDUNE & SBN

[D. Kim, KC Kong, JCP, S. Shin, 1804.07302] 

Discussion with ICARUS for iBDM (Gran Sasso + Future @ SBN-Fermilab)

 Underground ν experiments

 DUNE:  dedicated study [D. Kim, JCP, S. Shin, work in progress with DUNE experimentalists]

included in DUNE TDR as new particle searches (BSM physics opportunities)

 Summary of possible phenomenology (e vs p vs DIS) in various relevant experiments 

such as DarkSide-20k, DUNE, Hyper-K, IceCube, … [Kim, Machado, JCP, Shin, 1903.xxxxx]



 (quasi-elastic) p-scattering vs DIS

DIS can 

dominate

 Penalty on p-scattering Eth> 21 MeV [ArgoNeuT, 1405.4261]: 𝜎𝜒1 𝑝
𝑐𝑢𝑡

 But, no cuts on DIS

 p-scattering still dominates over DIS for 𝑚𝑋 < 1 GeV (cf. ν scattering via W, Z)

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]
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 (quasi-elastic) p-scattering vs DIS

 Number of DIS induced events (Y=atomic number/atomic weight)

 Even with 380 kt water target (HK/KNO), DIS ≲ 0.1 events/yr

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]
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dominate< 0.1/yr

L
o

g
1
0
(m

X
/G

e
V

)

Log10(m1 /GeV)

L
o

g
1
0
(m

X
/G

e
V

)

Log10(m1 /GeV)

χ1
χ1



 Scenario I: χ2 decays visibly via an off-shell X exchange (δ𝑚 < 𝑚𝑋 & 𝑚𝑋 > 2𝑚1)

Babar

Babar

𝜒2 → 𝑋∗𝜒1 → 𝑒+𝑒−𝜒1

HK/KNO

DUNE

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

Experimental reach 
for 1-year of running

DUNE - cuts

HK/KNO - cuts



Babar

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

Experimental reach 
for 1-year of running

 Scenario II: χ2 emits an on-shell X & the X decays visibly (δ𝑚 > 𝑚𝑋 & 𝑚𝑋 < 2𝑚1) 

or χ2 decays visibly via a three-body process just like scenario I (δ𝑚 < 𝑚𝑋 < 2𝑚1). 

Babar
NA48/2

HK/KNO

DeepCore
𝜒2 → 𝑋(∗)𝜒1 → 𝑒+𝑒−𝜒1

DeepCore - cuts

HK/KNO - cuts



P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

 Many existing/upcoming 

experiments are potentially 

capable of testing models 

conceiving BDM

 Additional physics 

opportunity on top of the 

main mission of each 

experiment
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 Rising interest in non-minimal dark sector scenarios & BDM (relativistic DM)

 BDM searches at the cosmic frontier are promising & provide a new direction to explore 

dark sector physics.

 Weak interaction/Small flux Large V is required (e.g. SK, HK/KNO, DUNE, IceCube, …).

 Experimental studies have already begun, e.g. SK, COSINE-100, ICARUS, ProtoDUNE, … 
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[S. Shin’s talk @ PONDD 2018]Dedicated study in progress



 νe flux [SK, 1502.03916] ⊗ νe cross section [Formaggio, Zeller, 1305.7513]

 Most DIS events result in messy final states, not mimicking signal events &

A majority of resonance event may create a few mesons in the final state

 12.2 events/kt/yr are potentially relevant.

 PID, timing information, vertex resolution, etc. can suppress such events 

significantly.  Zero-BG is achievable!

[Formaggio, Zeller, 1305.7513]



[DUNE CDR-Vol.2 (2015)]

[Super-Kamiokande (2012)]

~𝟒𝟎. 𝟐/yr/kt: may 
contain multi-track 
events

Single-track candidates: 𝟑𝟐. 𝟒 + 𝟖. 𝟖 =
𝟒𝟏. 𝟐 /yr/kt, while total e-like events are 
49.9 /yr/kt. (Note that SK takes e-like e
vents with 𝐸 > ~10 MeV.)
 Potential BGs for elastic scattering 

signal (eBDM) events

Multi-track candidates: 𝟓. 𝟐 /yr/kt
 Most extra tracks come from mesons 

which can be identified at LArTPC.
 Very likely to be background-free for 

inelastic scattering signal (iBDM) 
events

𝜈𝑒
𝑒−

𝜋

𝜋
𝜋

𝑝/𝑛



[S. Shin’s talk @ PONDD 2018]

D. Kim, JCP & S. Shin [1612.06867]



A. Chatterjee, JCP et al. [1803.03264]



 Non-trivial to find appropriate parameterizations for providing model-independent 

reaches due to many parameters involved in the model  

 Number of signal events Nsig is 

𝑁sig = 𝜎 ∙ ℱ ∙ 𝐴 ∙ 𝑡exp ⋅ 𝑁𝑒

 𝜎: scattering cross section between 𝜒1 (BDM) and electron (target)

 ℱ: flux of incoming (boosted) 𝜒1

 𝐴: acceptance

 𝑡exp: exposure time

 𝑁𝑒: total number of target electrons
Controllable!

We factored out the acceptance related to the distance between the primary (ER) & the seco

ndary vertices, other factors such as cuts, 𝐸th are absorbed into 𝜎𝜖.

G. Giudice, D. Kim, JCP & S. Shin (2017)



 Acceptance determined by the distance between the primary & the secondary vertices

 (relatively) conservative limit to require two correlated vertices in the fiducial 

volumes (also to be distinguished from elastic scattering) 

90% C.L. with
zero background

Calculable given 
a detector

ℓlab: different event-by-event, so taking ℓlab
max for 

more conservative limit

Evaluated for 
each detector

G. Giudice, D. Kim, JCP & S. Shin (2017)



 More familiar parameterization is possible with the below modification.        

Experimental sensitivity can be 

represented by 𝜎𝜖 vs.𝑚0(= 𝐸1).

set to be 5 × 10−26 cm3s−1

ℱ~
𝜎𝑣 𝜒0𝜒0→𝜒1𝜒1

𝑚0
2

𝜎𝜖

 Then having

𝜎𝜖 vs. 𝑚0(= 𝐸1 = 𝛾1𝑚1)

cf. 𝜎 vs. 𝑚DM in conventional WIMP searches

Relevant to signals with overlaid vertices 

or elastic scattering signals



 Expecting ~104−6 more muon flux at ProtoDUNE/SBN than that at HK, SK/KNO, DUNE.

 Expecting ~5 − 50 more muon flux at HK than that at SK/KNO, DUNE.

Babar

[Bugaev et al. (1998)]

HK: ~1750 m.w.e.
SK, KNO: ~2700 m.w.e.
DUNE: ~4300 m.w.e.

ProtoDUNE, SBN:
~𝑂(10) m.w.e.

v



Exp. e-scattering p-scattering

Energy for primary scattering Peaking towards smaller momentum transfer

Threshold energy Small
Large for Cherenkov

Small for LArTPC

Form factor suppression N/A Yes

Deep inelastic scattering N/A Yes

Energy for secondary process (Typically) highly boosted (Typically) less boosted

Object identification

Highly collimated 
(in preferred mass spectra)

Recoil electron + single
object-like 𝑒+𝑒− pair 
(assuming 𝜃𝑟𝑒𝑠~3

∘) 

Reasonably separated
(in preferred mass spectra)

Recoil proton + well-
separated 𝑒+𝑒− pair

D. Kim, JCP & S. Shin (2016),

P. Machado, D. Kim, JCP & S. Shin 

[1903.xxxxx]

𝜒1 𝜒2 𝜒1

𝑋 𝑋

𝑒/𝑝 𝑒/𝑝

𝐸1 = 𝛾1𝑚1

𝑒+
𝑒−

Vs.


