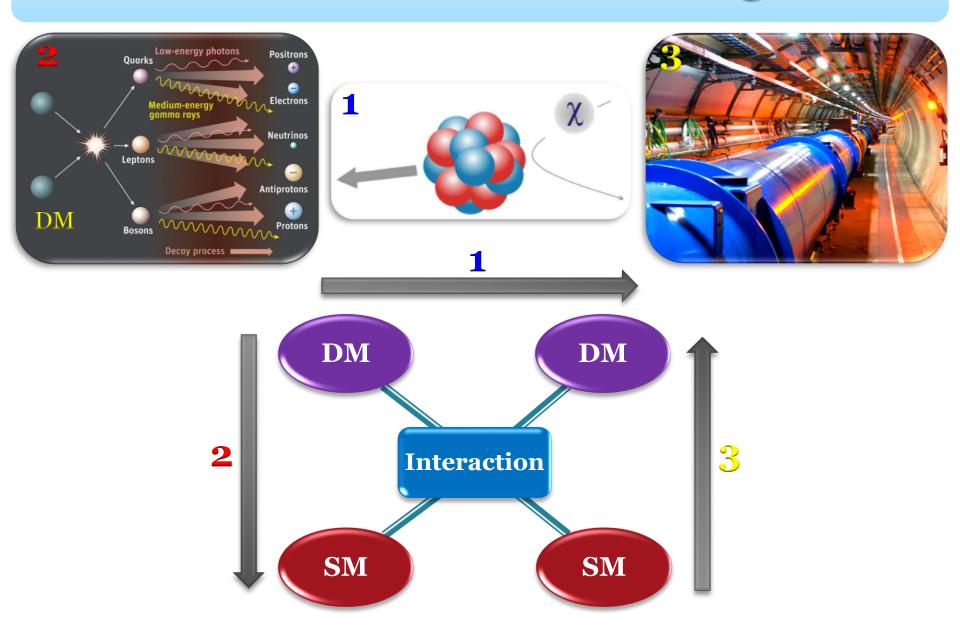

Boosted DM & its Search

Jong-Chul Park

2019.02.27

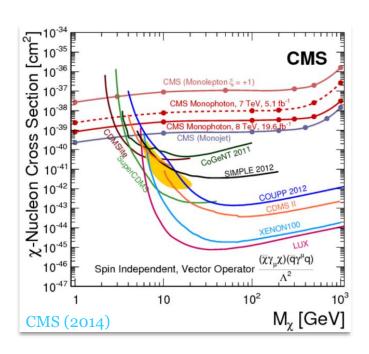
YuCHE 2019 Workshop

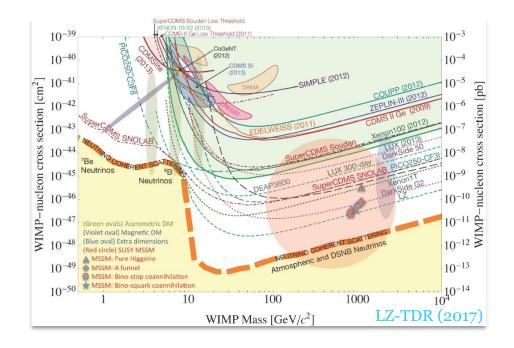
Boosted DM & its Search


Jong-Chul Park

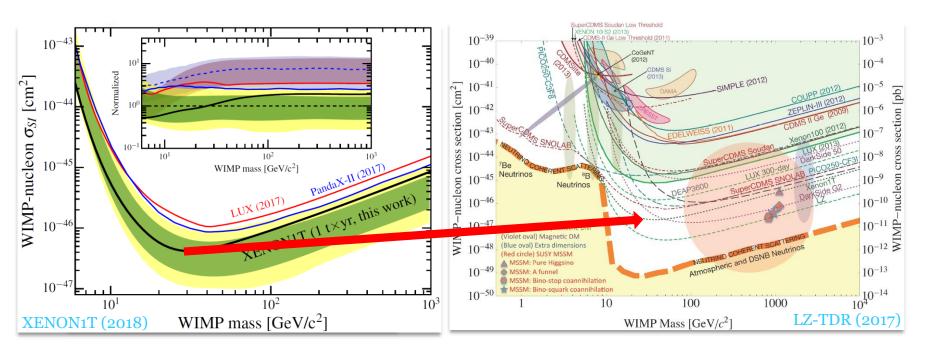
1112.4491, 1411.6632, 1611.09866, 1612.06867, 1712.07126, 1803.03264, 1804.07302, more in progress,

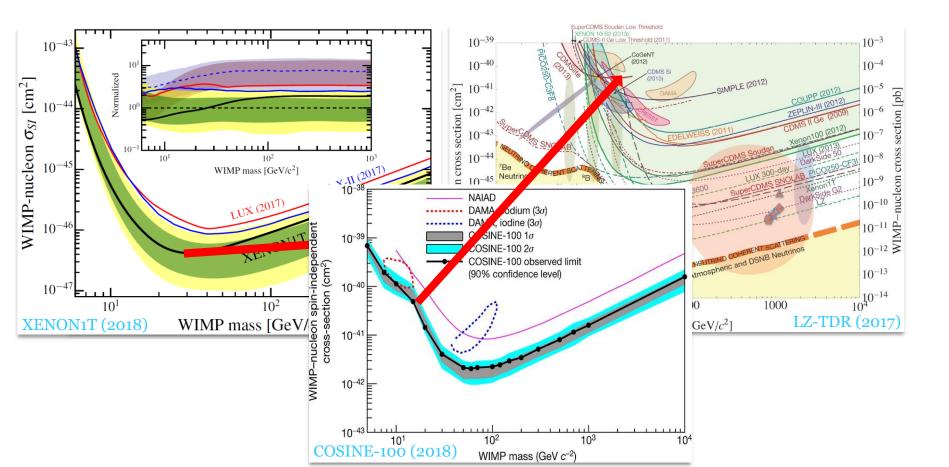
In collaboration with H. Alhazmi, G. Belanger, A. Chatterjee, A. De Roeck, G. Giudice, D. Kim, KC. Kong, P. Machado, G. Mohlabeng, Z. Moghaddam, S. Shin, L. Whitehead, J. Yu



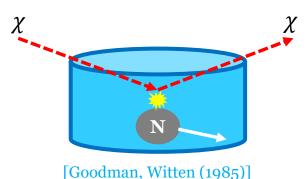

Conventional DM Search Strategies

Current Status of Conventional DM Searches


- ❖ No (solid) observation of DM signatures via non-gravitational interactions
- ❖ Many searches designed under WIMP/minimal dark sector scenarios
 - → Just excluding more parameter space in DM models


Current Status of Conventional DM Searches

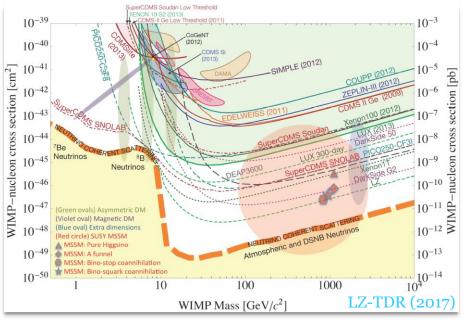
- ❖ No (solid) observation of DM signatures via non-gravitational interactions
- ❖ Many searches designed under WIMP/minimal dark sector scenarios
 - → Just excluding more parameter space in DM models


Current Status of Conventional DM Searches

- ❖ No (solid) observation of DM signatures via non-gravitational interactions
- ❖ Many searches designed under WIMP/minimal dark sector scenarios
 - → Just excluding more parameter space in DM models

Typical DM Direct Searches

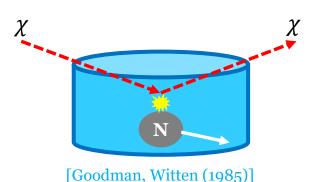
❖ (Mainly) focusing on "*Non*-relativistic" weakly interacting massive particles (WIMPs) search


- ✓ Elastic scattering of
- ✓ Non-relativistic
- ✓ Weak-scale DM
- ✓ with nuclei

- \checkmark $E_{\rm recoil} \sim mv^2$ $\sim 1 100 {\rm keV}$ $(v/c \sim 10^{-3})$
- ✓ Detectors

 designed to be

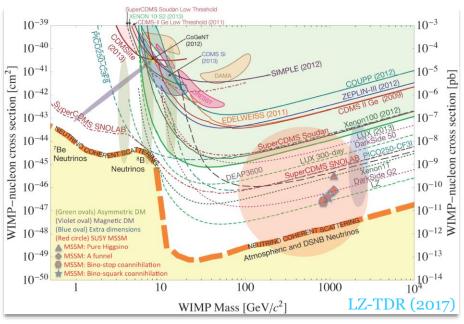
 sensitive to


 this E range

- ✓ No solid observation of WIMP signals
- ✓ A wide parameter respace already excluded
- ✓ Close to the neutrino "floor"
- ✓ Need new ideas!

Typical DM Direct Searches

❖ (Mainly) focusing on "*Non*-relativistic" weakly interacting massive particles (WIMPs) search

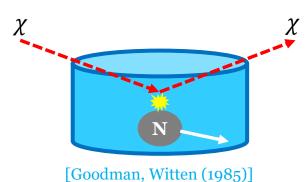

- ✓ Elastic scattering of
- ✓ Non-relativistic
- ✓ Weak-scale DM
- ✓ with nuclei

- \checkmark $E_{\rm recoil} \sim mv^2$ $\sim 1 100 \text{ keV}$ $(v/c \sim 10^{-3})$
- ✓ Detectors

 designed to be

 sensitive to

 this E range



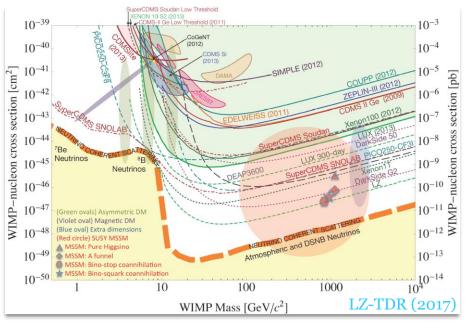
- ✓ No solid observation of WIMP signals
- ✓ A wide parameter respace already excluded

Time to change our point of view?!

Typical DM Direct Searches

❖ (Mainly) focusing on "*Non*-relativistic" weakly interacting massive particles (WIMPs) search

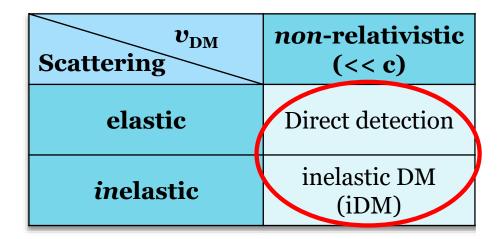
- (in)Elastic scattering of
 - ✓ Non-relativistic


 Other
- ✓ Weak-scale DM
- ✓ with nuclei or electron

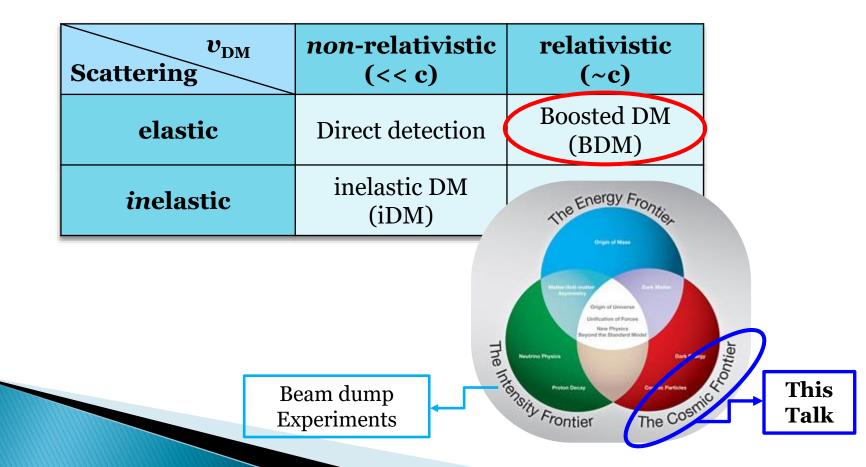
- \checkmark $E_{\text{recoil}} \sim mv^2$ $\sim 1 - 100 \text{ keV}$ $(v/c \sim 10^{-3})$
- ✓ Detectors

 designed to be

 sensitive to


 this E range

- ✓ No solid observation of WIMP signals
- ✓ A wide parameter respace already excluded


Time to change our point of view?!

DM Search Schemes (via Scattering)

Very well-studied

DM Search Schemes (via Scattering)

Boosted Dark Matter (BDM)

What if DM has a relativistic velocity?

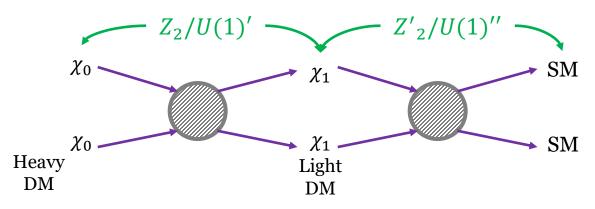
[Agashe, Cui, Necib, Thaler (2014)]

- \bullet DM coming from the universe with $E > E_{th}$ in ν -detectors
- ❖ Model building: right DM relic abundance & DM boosting mechanism

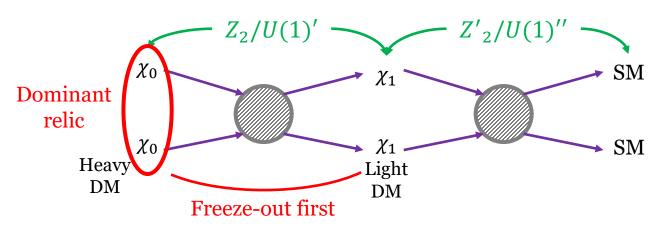
Boosted Dark Matter (BDM)

What if DM has a relativistic velocity?

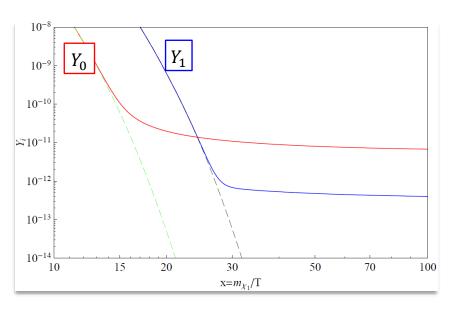
[Agashe, Cui, Necib, Thaler (2014)]

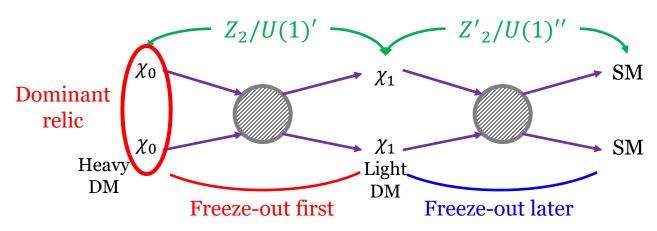

- **\Leftrightarrow** DM coming from the universe with $E > E_{th}$ in ν -detectors
- ❖ Model building: right DM relic abundance & DM boosting mechanism
 - ✓ Multi-component model: [Belanger & JCP, 1112.4491; Kong, Mohlabeng, JCP, 1411.6632;

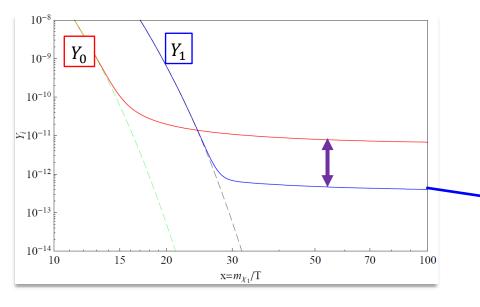
Kim, **JCP**, Shin, 1702.02944; Aoki & Toma, 1806.09154; etc.]


- ✓ Semi-annihilation model: [D'Eramo & Thaler, 1003.5912]
- ✓ Decaying multi-component DM: [Bhattacharya et al., 1407.3280; Kopp, Liu, Wang, 1503.02669]
- ✓ High velocity (semi-relativistic) DM
 - Anti-DM from DM-induced nucleon decay in the Sun: [Huang & Zhao, 1312.0011]
 - Energetic cosmic-ray induced DM: [Yin, 1809.08610; Bringmann & Pospelov, 1810.10543;

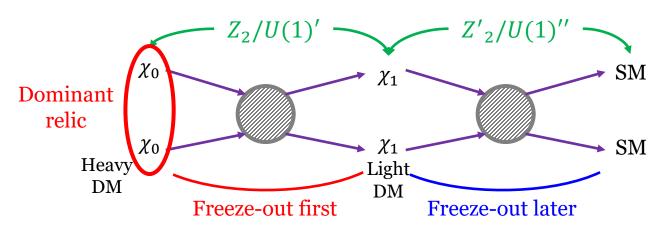
Ema, Sala, Sato, 1811.00520]

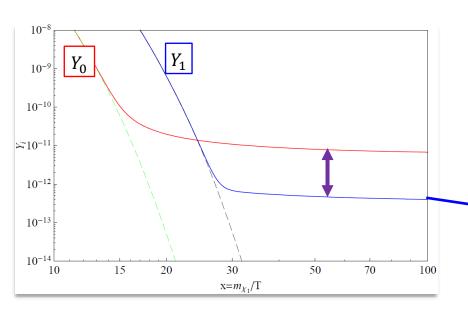

G. Belanger, **JCP** (2011)


G. Belanger, **JCP** (2011)


"Assisted Freeze-out" Mechanism

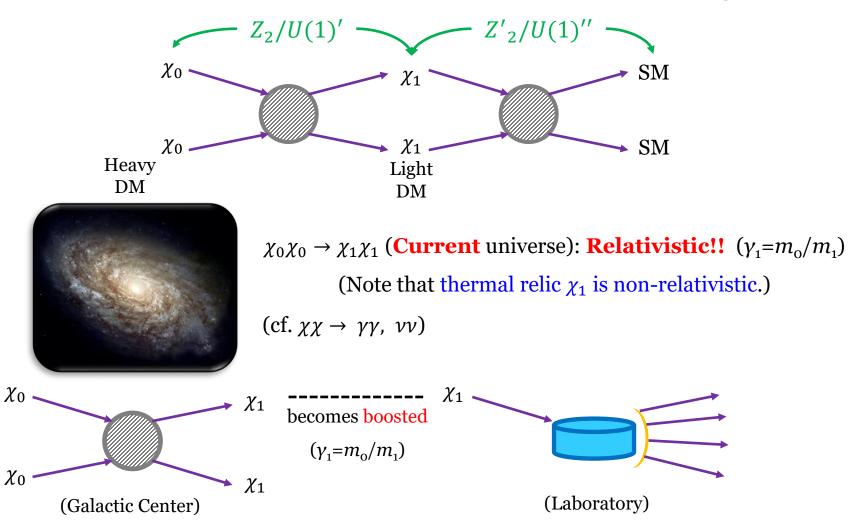
G. Belanger, **JCP** (2011)





 χ_1 : Negligible, Non-relativistic thermal relic

G. Belanger, **JCP** (2011)

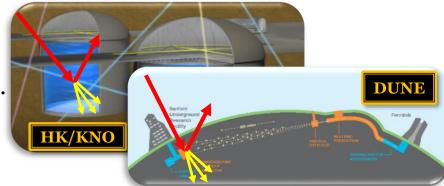


"Assisted Freeze-out" Mechanism

- ✓ Lighter relic χ_1 : hard to detect it due to small relic
 - \star χ_1 : Negligible, Non-relativistic thermal relic

G. Belanger, **JCP** (2011)

[Agashe, Cui, Necib, Thaler (2014)]


Detection of BDM

• Flux of boosted χ_1 near the earth (cf. $\chi\chi \to \gamma\gamma$, $\nu\nu$)

$$\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from the number density of DM χ_0 , $n_0 = \rho_0/m_0$

- ❖ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$ and assuming the NFW DM halo profile, one can obtain $\mathcal{F}_{\chi_1} \sim 10^{-6 \sim 8} \text{cm}^{-2} \text{s}^{-1}$ for χ_0 of weak-scale mass, $m_0 \sim O(10\text{-}100 \text{ GeV})$.
- **❖** Low flux → No sensitivity in conventional DM direct detection experiments
 - → Large volume (neutrino) detectors

motivated: SK/HK/KNO, DUNE, IceCube, ...

Detection of BDM

• Flux of boosted χ_1 near the earth (cf. $\chi\chi \to \gamma\gamma$, $\nu\nu$)

$$\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from the number density of DM χ_0 , $n_0 = \rho_0/m_0$

- ❖ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$ and assuming the NFW DM halo profile, one can obtain $\mathcal{F}_{\chi_1} \sim 10^{-6 \sim 8} \text{cm}^{-2} \text{s}^{-1}$ for χ_0 of weak-scale mass, $m_0 \sim O(10\text{-}100 \text{ GeV})$.
- **❖** Low flux → No sensitivity in conventional DM direct detection experiments
- → Large volume (neutrino) detectors

 motivated: SK/HK/KNO, DUNE, IceCube, ...
- HK/KNO

 Sanford

 Underground

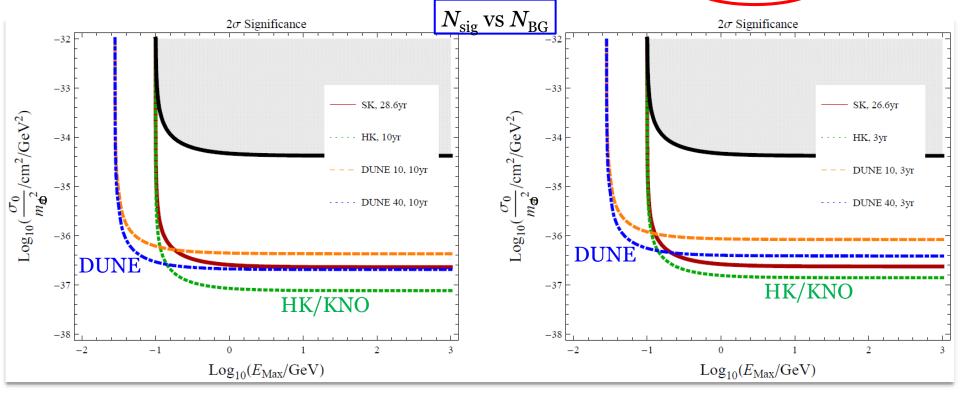
 Fermilab

 Fermilab

 Fermilab

 Formulab

 Formul


Sources

- ✓ GC: Agashe et al. (2014); Necib et al. (2016); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.
- ✓ Sun: Berger et al. (2014); Kong, Mohlabeng, JCP (2014); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.
- ✓ Dwarf galaxies: Necib et al (2016)

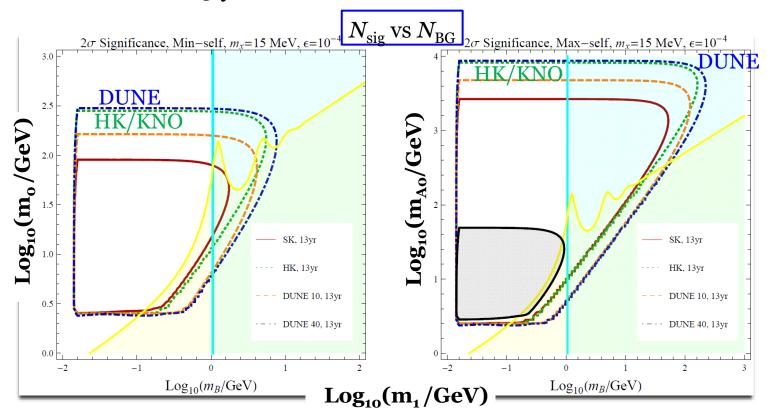
Experimental Reach (GC)

H. Alhazmi, KC Kong, G. Mohlabeng & **JCP** (2016)

* Total number of signal events: $N_{\text{sig}}^{\text{GC}} = \Delta T N_{\text{target}} \Phi_{\text{GC}}^{\theta_C} \sigma_{Be^- \to Be^-}$

5 year construction + 10 year running

10 year construction + 3 year running

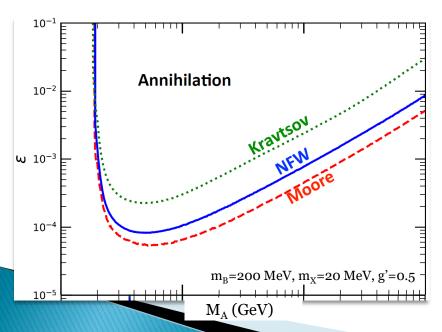

 \checkmark Vertical edge: $E_{\text{Max}} > E_{\text{th}}$, Horizontal edge: $N_{\text{sig}} \sim N_{\text{target}} \Delta T \& n_{\text{DM}} \sim \rho_{\text{DM}} / m_{\text{DM}}$

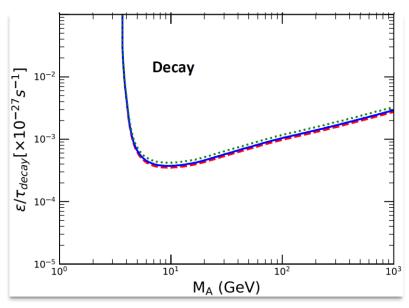
VS

Experimental Reach (Sun)

H. Alhazmi, KC Kong, G. Mohlabeng & **JCP** (2016)

3 2σ sensitivities for 13 years of data

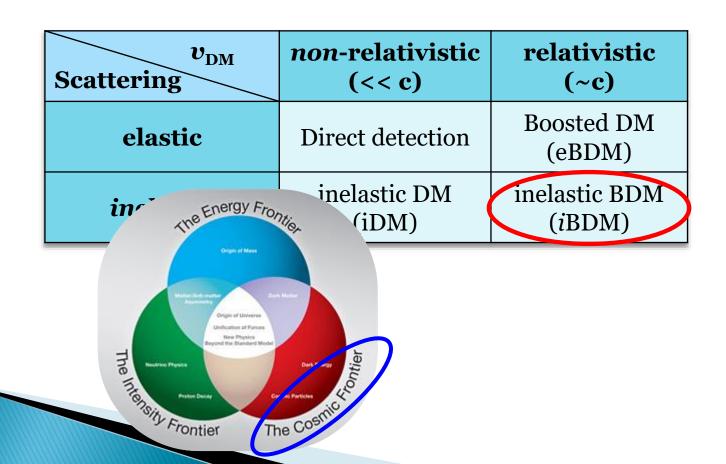

- **❖ Point-like** source **→** Efficient background reduction!
- $\bullet \theta_{C} \sim \theta_{\text{res}} \text{ (cf. GC: } \theta_{C} \sim \max\{10^{\circ}, \theta_{\text{res}}\}) \quad N_{\text{BG}}^{\theta_{C}} = \frac{1 \cos \theta_{\text{res}}}{2} N_{\text{BG}} \sim \theta_{\text{res}}^{2}$


SK Official Results for BDM Search

Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande

(Dated: November 16, 2017)

No more SF of Theorists! posted dark matter using 161.9 kiloton-years of Super-Kamiokande IV data is resented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic Center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic Center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay.



SK Collaboration, PRL (2018)

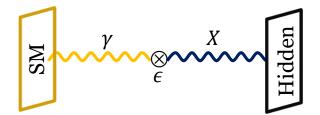
DM Search Schemes (via Scattering)

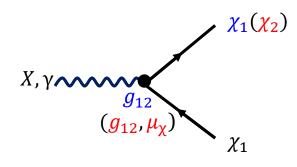
Scattering v _{DM}	non-relativistic (<< c)	relativistic (~c)
elastic	Direct detection	Boosted DM (eBDM)
inelastic	inelastic DM (iDM)	

DM Search Schemes (via Scattering)

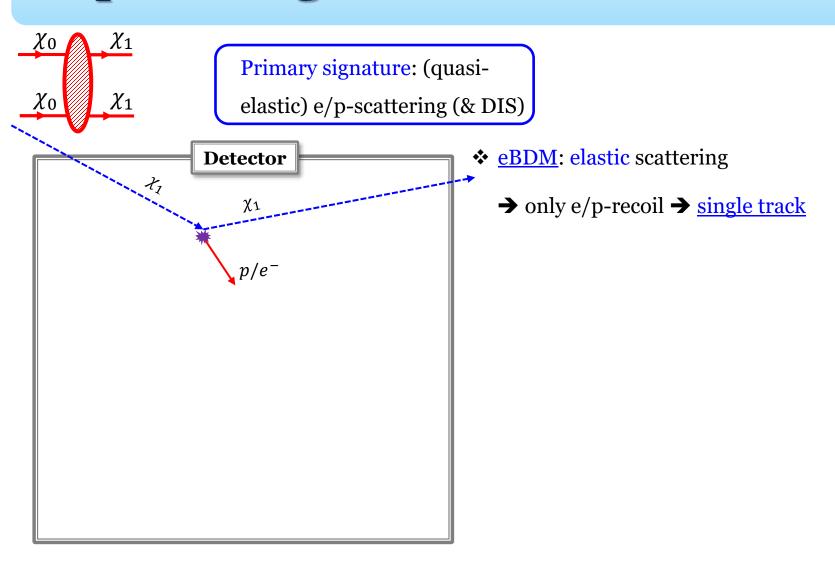
BDM Models

$$\mathcal{L}_{\rm int} \ni -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + \underbrace{g_{11} \bar{\chi}_1 \gamma^\mu \chi_1 X_\mu} + \underbrace{g_{12} \bar{\chi}_2 \gamma^\mu \chi_1 X_\mu} + h.c.$$

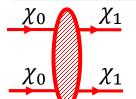

Kim, **JCP** & Shin, PRL (2017) Giudice, **JCP**, et al., PLB (2018)


$$\mathcal{L}_{\rm int} \ni (\mu_\chi/2) \bar{\chi}_2 \sigma^{\mu\nu} \chi_1 F_{\mu\nu} + h.c.$$

- \checkmark χ_2 : a heavier (unstable) dark-sector state
- ✓ Flavor-conserving → elastic scattering (eBDM)
- ✓ Flavor-changing → inelastic scattering (*i*BDM)

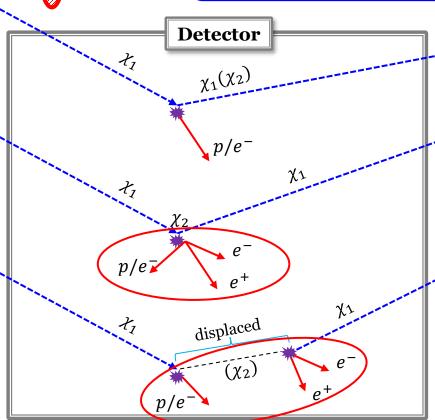


- ✓ Source: GC, Sun (capture), dwarf galaxies, etc.
- ✓ Mechanism: assisted freeze-out, semi-annihilation, decaying, cosmic-ray induced DM, etc.
- ✓ Portal: vector portal, scalar portal, etc.
- ✓ DM spin: fermionic DM, scalar DM, etc.
- ✓ *i*BDM-inducing operators: two chiral fermions, two real scalars, dipole moment interactions, etc.



Expected Signatures: eBDM

Expected Signatures: iBDM



Primary signature: (quasi-

elastic) e/p-scattering (& DIS)

Secondary signatures:

$$e^+e^-, \mu^+\mu^-, \pi^+\pi^-, \gamma, ...$$
 (by δm)

- ❖ <u>eBDM</u>: elastic scattering or loose 2nd signature
 - → only e/p-recoil → single track
- ❖ <u>iBDM</u>: "Prompt" inelastic scattering
 - \rightarrow e/p-recoil + e^+e^- pair \rightarrow three tracks
- ❖ <u>iBDM</u>: "Displaced" inelastic scattering
 - ⇒ e/p-recoil + e^+e^- pair (typically from a three-body decay of χ_2) ⇒ three tracks
- **❖ Tracks** will **pop-up** inside the fiducial volume

- \diamond DM direct detection experiments: by pumping up the BDM flux with sub-GeV m_0
 - ✓ Theoretical study: [G. Giudice, D. Kim, JCP, S. Shin, 1712.07126]

$$\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$

- \diamond DM direct detection experiments: by pumping up the BDM flux with sub-GeV m_0
 - ✓ Theoretical study: [G. Giudice, D. Kim, JCP, S. Shin, 1712.07126]

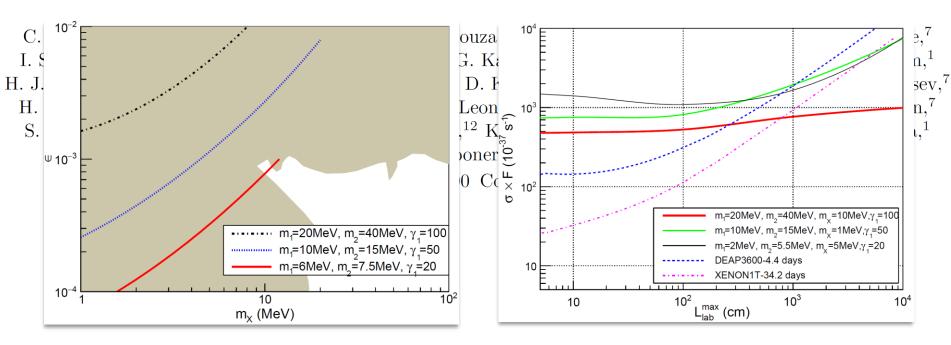
$$\mathcal{F}_{\chi_1} \propto rac{\langle \sigma v
angle_{\chi_0 \chi_0
ightarrow \chi_1 \chi_1}}{m_0^2}$$

✓ COSINE-100: [COSINE-100 Collaboration, 1811.09344]

First official direct search for *i*BDM

The First Direct Search for Inelastic Boosted Dark Matter with COSINE-100

C. Ha,¹ G. Adhikari,² P. Adhikari,² E. Barbosa de Souza,³ N. Carlin,⁴ S. Choi,⁵ M. Djamal,⁶ A. C. Ezeribe,⁷ I. S. Hahn,⁸ E. J. Jeon,¹ J. H. Jo,³ H. W. Joo,⁵ W. G. Kang,¹ W. Kang,⁹ M. Kauer,¹⁰ G. S. Kim,¹¹ H. Kim,¹ H. J. Kim,¹¹ K. W. Kim,¹ N. Y. Kim,¹ S. K. Kim,⁵ Y. D. Kim,^{1,2} Y. H. Kim,^{1,12} Y. J. Ko,¹ V. A. Kudryavtsev,⁷ H. S. Lee,¹ J. Y. Lee,¹¹ M. H. Lee,¹ D. S. Leonard,¹ W. A. Lynch,⁷ R. H. Maruyama,³ F. Mouton,⁷ S. L. Olsen,¹ B. J. Park,¹³ H. K. Park,¹⁴ H. S. Park,¹² K. S. Park,¹ R. L. C. Pitta,⁴ H. Prihtiadi,⁶ S. J. Ra,¹ C. Rott,⁹ K. A. Shin,¹ A. Scarff,⁷, N. J. C. Spooner,⁷ W. G. Thompson,³ L. Yang,¹⁵ and G. H. Yu⁹ (COSINE-100 Collaboration)


- \diamond DM direct detection experiments: by pumping up the BDM flux with sub-GeV m_0
 - ✓ Theoretical study: [G. Giudice, D. Kim, JCP, S. Shin, 1712.07126]

$$\mathcal{F}_{\chi_1} \propto rac{\langle \sigma v
angle_{\chi_0 \chi_0 o \chi_1 \chi_1}}{m_0^2}$$

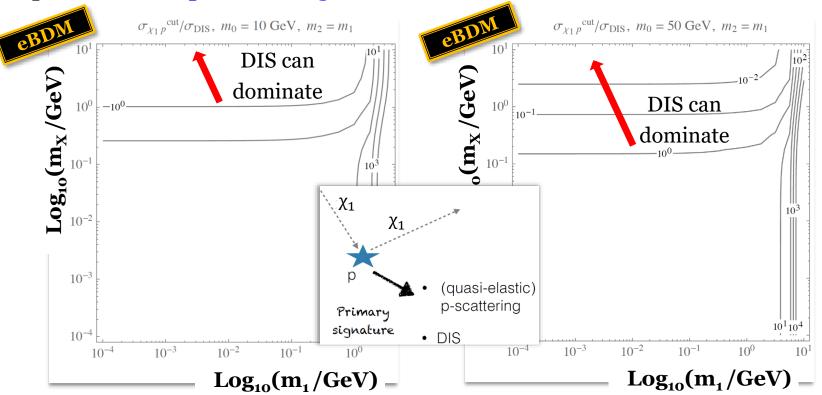
✓ COSINE-100: [COSINE-100 Collaboration, 1811.09344]

First official direct search for *i*BDM

The First Direct Search for Inelastic Boosted Dark Matter with COSINE-100

- **❖** Surface *v* experiments (cosmic-ray backgrounds)
 - ✓ ProtoDUNE: [Chatterjee, De Roeck, Kim, Moghaddam, JCP, Shin, Whitehead, Yu, 1803.03264]
 Proposal submitted to ProtoDUNE collaboration (1st new physics search @ ProtoDUNE)
 - ✓ Short-Baseline Neutrino (SBN) program: ICARUS, MicroBooNE, SBND
 eBDM search using Earth Shielding @ ProtoDUNE & SBN

[D. Kim, KC Kong, **JCP**, S. Shin, 1804.07302]

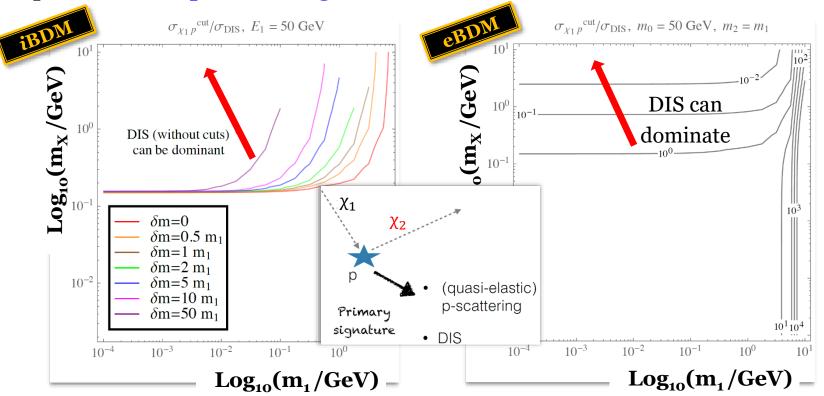

Discussion with ICARUS for iBDM (Gran Sasso + Future @ SBN-Fermilab)

- \diamond Underground ν experiments
 - ✓ DUNE: dedicated study [D. Kim, JCP, S. Shin, work in progress with DUNE experimentalists] included in DUNE TDR as new particle searches (BSM physics opportunities)
 - ✓ Summary of possible phenomenology (e vs p vs DIS) in various relevant experiments such as DarkSide-20k, DUNE, Hyper-K, IceCube, ... [Kim, Machado, JCP, Shin, 1903.xxxxx]

Signals @ DUNE: p vs DIS

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

❖ (quasi-elastic) p-scattering vs DIS

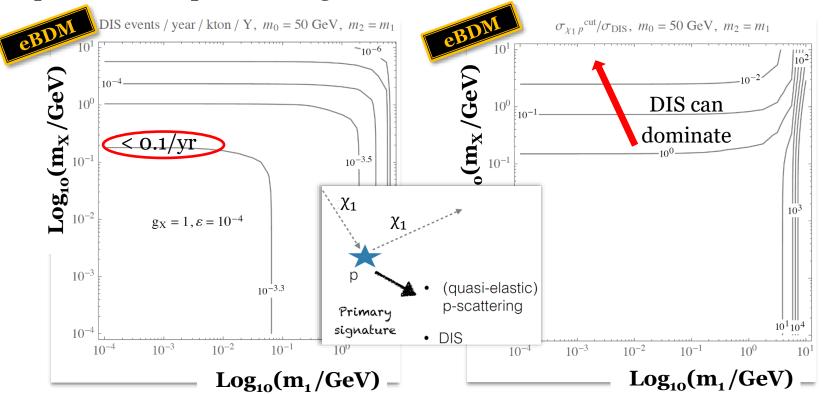


- ✓ Penalty on p-scattering E_{th} > 21 MeV [ArgoNeuT, 1405.4261]: $\sigma_{\chi 1 p}^{cut}$
- ✓ But, no cuts on DIS
- ✓ p-scattering still dominates over DIS for m_X < 1 GeV (cf. ν scattering via W, Z)

Signals @ DUNE: p vs DIS

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

❖ (quasi-elastic) p-scattering vs DIS

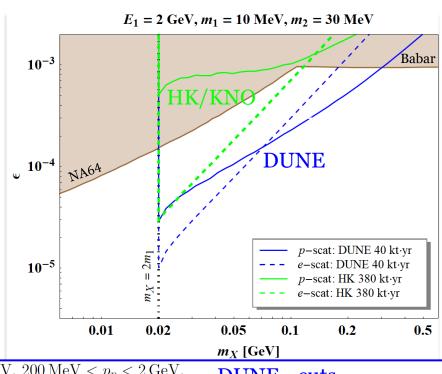


- ✓ Penalty on p-scattering E_{th} > 21 MeV [ArgoNeuT, 1405.4261]: $\sigma_{\chi 1 p}^{cut}$
- ✓ But, no cuts on DIS
- ✓ p-scattering still dominates over DIS for m_X < 1 GeV (cf. ν scattering via W, Z)

Signals @ DUNE: p vs DIS

P. Machado, D. Kim, **JCP** & S. Shin [1903.xxxxx]

❖ (quasi-elastic) p-scattering vs DIS



- ✓ Number of DIS induced events (Y=atomic number/atomic weight)
- ✓ Even with 380 kt water target (HK/KNO), DIS \leq 0.1 events/yr

Dark X Parameter Space: Scenario I

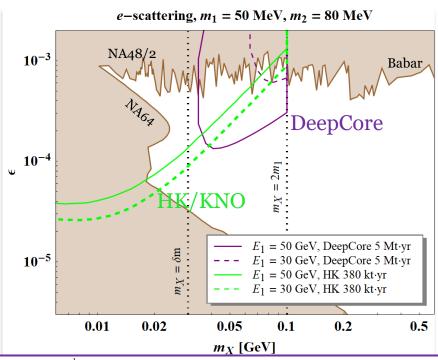
P. Machado, D. Kim, **JCP** & S. Shin [1903.xxxxx]

❖ Scenario I: χ_2 decays visibly via an off-shell X exchange ($\delta m < m_X \& m_X > 2m_1$)

$$\chi_2 \rightarrow X^* \chi_1 \rightarrow e^+ e^- \chi_1$$

Experimental reach for 1-year of running

i) $p_e > 30 \text{ MeV}$, $200 \text{ MeV} < p_p < 2 \text{ GeV}$,


DUNE - cuts

- ii) $\Delta\theta_{e-i} > 1^{\circ}$, $\Delta\theta_{p-i} > 5^{\circ}$ with i denoting the other visible final state particles,
- iii) both primary and secondary vertices should appear in the detec
- i) $p_e > 100 \text{ MeV}$, 1.07 GeV $< p_p < 2 \text{ GeV}$, HK/KNO - cuts
- ii) $\Delta\theta_{e-i} > 3^{\circ}$ ($\Delta\theta_{e-i} > 1.2^{\circ}$) for $p_e < 1.33$ GeV ($p_e > 1.33$ GeV) and $\Delta\theta_{p-i} > 3^{\circ}$ for all p_p with i running over the other visible final state particles, and
- iii) both primary and secondary vertices should appear in the detector fiducial volume.

Dark X Parameter Space: Scenario I

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

❖ Scenario II: χ_2 emits an on-shell X & the X decays visibly ($\delta m > m_X \& m_X < 2m_1$) or χ_2 decays visibly via a three-body process just like scenario I ($\delta m < m_X < 2m_1$).

$$\chi_2 \rightarrow X^{(*)}\chi_1 \rightarrow e^+e^-\chi_1$$

Experimental reach for 1-year of running

ii) the secondary vertex should appear in the detector fiducial volume and be at least 5

meters away from the primary vertex. i) $p_e > 100 \text{ MeV}$, 1.07 GeV $< p_p$

- i) $p_e > 100$ MeV, 1.07 GeV $< p_p < 2$ GeV, HK/KNO cuts
- ii) $\Delta\theta_{e-i} > 3^{\circ} (\Delta\theta_{e-i} > 1.2^{\circ})$ for $p_e < 1.33$ GeV $(p_e > 1.33$ GeV) and $\Delta\theta_{p-i} > 3^{\circ}$ for all p_p with i running over the other visible final state particles, and
- iii) both primary and secondary vertices should appear in the detector fiducial volume.

e/iBDM Searches in Various Exps.

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

DM	Target	Vol	ume [t]	Depth	$E_{ m th}$		Resolution PID			Run	Refs.
Experiment	Material	Active	Fiducial	[m]	[keV]	Position [cm]	Angular [°]	Energy [%]	PID	Time	neis.
DarkSide	DarkSide LAr		36.9	3,800	(2) (1)	01 1		< 10		2012	[69]
-50	DP-TPC	DP-TPC kg kg		m.w.e. $\mathcal{O}(1)$		$\sim 0.1 - 1$	_	$\lesssim 10$	_	2013-	[82]
DarkSide	LAr	92	20	3,800	(2)(1)	$\sim 0.1 - 1$		< 10		goal:	[E9]
-20k	DP-TPC	23	20	m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	$\lesssim 10$	_	2021-	[53]
VENON4E	LXe	0.0	1.0	3,600	(2/1)	0.1 1				2016	for oal
XENON1T	DP-TPC 2.0		1.3	m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	_	_	-2018	[83, 84]
VENON-T	LXe	5.0	4	3,600	(2)(1)	$\sim 0.1 - 1$				goal:	[69]
XENONnT	DP-TPC	P-TPC $5.9 \sim 4$		m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	_	_	2019-	[83]
DEAP	SP LAr	3.26 2.5	2.2	2,000	O(10)	< 10		$\sim 10 - 20$		2016	[70, 79]
-3600	S1 only	3.20	3.26 2.2		O(10)	< 10	_	$\sim 10-20$	_	2016-	[70-72]
DEAP	SP LAr	150	50	2,000	O(10)	15	_			_	[70]
-50T	S1 only	100	90	2,000	O(10)	15	_	_	_	_	[70]
LUX-	LXe	7	5.6	4,300	$\mathcal{O}(1)$	$\sim 0.1 - 1$		2.5 MeV: 2		goal:	[85]
ZEPLIN	DP-TPC	- 1	0.6	m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	2.5 Mev: 2	_	2020-	[69]
Neutrino	Target	Volu	ıme [kt]	Depth	$E_{ m th}$		Resolution		DID	Run	D.C
Experiment	Material	Active	Fiducial	[m]	[MeV]	Vertex [cm]	Angular [°]	Energy [%]	PID	Time	Refs.
D :	organic	0.070	0.1	3,800	0.0	0.15		5		> 5.6	[oe]
Borexino	LS	0.278	0.1	m.w.e.	~ 0.2	\sim 9-17	_	$\sqrt{E(\mathrm{MeV})}$	_	year	[86]
IZI AND	T.C.	1	0.0000	1.000	0.0 1	12-13		6.4-6.9		~ 10	[07 00]
KamLAND	LS	1	0.2686	1,000	0.2 - 1	$\frac{12-13}{\sqrt{E (\text{MeV})}}$	_	$\frac{6.4 - 6.9}{\sqrt{E(\text{MeV})}}$	_	year?	[87, 88]
					< 1,		μ :	_	μ^{\pm} vs π^{\pm} ,	goal:	
JUNO	LS	_	20	700	goal: 0.1	$\frac{12}{\sqrt{E \text{ (MeV)}}}$	L > 5 m: < 1,	$\frac{3}{\sqrt{E (\text{MeV})}}$	e^{\pm} vs π^0 :	2020-	[89]
						V E (Mer)	$L>1\ \mathrm{m}$: <10	• • •	difficult		
		Total:	(SP: 10 +		e: 30,			$e: 1 \oplus \frac{15}{\sqrt{E \text{ (MeV)}}}$	good	10 kt:	
DUNE	LArTPC	17.5	DP: 10.6)	1500	p:	1-2	$e, \mu, \pi^{\pm} : 1,$	p: 10 (p < 0.4 GeV),	e, μ, π^{\pm}, p	2025-,	[6 54 56]
DUNE	LATIFC	×4	×2	1900	21-50	1-2	p, n:5	$5 \oplus \frac{30}{\sqrt{E \text{ (GeV)}}}$	separation	20 kt:	[6, 54-56]
							P, 10 1 3		oop core core		
	117	m . 1				* 14 17 0*	40 34 37 05	(p > 0.4 GeV)		2026-	
CITA	Water	Total:	00.5	1.000	e: 5,	5 MeV: 95,	10 MeV: 25,	10 MeV: 16,	e, μ :	$\gtrsim 15$	foo ool
SK	Cherenkov	50	22.5	1,000	p:485	10 MeV: 55,	0.1 GeV: 3,	1 GeV: 2.5	good	year	[90-92]
		m . ı		,		20 MeV: 40	1.33 GeV: 1.2				
	VV-4	Total:	107	Japan:		5 MeV: 75,	-::1	1 -44	e, μ :	1	
HK	Water	258	187	650,	e:<5,	10 MeV: 45,	similar	better	good,	goal:	[57–59]
	Cherenkov	$\times 2$	$\times 2$	Korea:	p:485	15 MeV: 40,	to SK	than SK	π^0, π^{\pm} :	2026-	. ,
	m	***		1,000		0.5 GeV: 28	D 1 :		mild	- D	
	Target		fective	Depth	$E_{\rm th}$	**	Resolution	T [0+1	PID	Run	Refs.
	Material		me [Mt]	[m]	[GeV]	Vertex [m]	Angular [°]	Energy [%]		Time	
IceCube	Ice		eV: ~ 30 ,	1,450	~ 100	vertical: 5,	μ -track: ~ 1 ,	100 GeV: 28,	only	2011-	[61, 93]
	Cherenkov		eV: ∼ 200	Ice		horizontal: 15	shower: ~ 30	1 TeV: 16	μ	(2008)	
DeepCore	Ice		eV: ~ 5 ,	2,100	~ 10	better	μ -track: ~ 1 ,	_	only	2011-	[60, 61]
	Cherenkov		leV: ~ 30	Ice		1	shower: ≥ 10	1 C V FF	μ	(2010)	
PINGU	Ice		eV: ~ 1,	2,100	~ 1	much	1 GeV: 25,	1 GeV: 55,	only	>	[94]
	Cherenkov	10 G	leV: ∼ 5	Ice		better	10 GeV: 10	10 GeV: 25	μ	2023	
Gen2	Ice	~	10 Gt	1,360	~ 50	worse	μ -track: < 1	_	only	_	[95]
	Cherenkov			Ice	TeV		shower: ~ 15		μ		


- Many existing/upcoming
 experiments are potentially
 capable of testing models
 conceiving BDM
- Additional physics

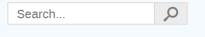
 opportunity on top of the
 main mission of each

 experiment

e/iBDM Searches in Various Exps.

P. Machado, D. Kim, JCP & S. Shin [1903.xxxxx]

Detectors are complementary to one another rather than superior to the other!


Conclusion

- Rising interest in non-minimal dark sector scenarios & BDM (relativistic DM)
- > BDM searches at the cosmic frontier are promising & provide a new direction to explore dark sector physics.
- ➤ Weak interaction/Small flux → Large V is required (e.g. SK, HK/KNO, DUNE, IceCube, ...).
- Experimental studies have already begun, e.g. SK, COSINE-100, ICARUS, ProtoDUNE, ...

Scattering v _{DM}	$egin{aligned} oldsymbol{non} ext{-relativistic} \ oldsymbol{(v_{ ext{DM}}}\ll\mathbf{c}) \end{aligned}$	relativistic ($v_{ m DM}$ ~c)		
elastic	Direct detection	Boosted DM (eBDM)		
inelastic	inelastic DM (<i>i</i> DM)	inelastic BDM (<i>i</i> BDM)		

New Opportunities at the Next Generation Neutrino Experiments

12-13 April 2019 University of Texas, Arlington US/Central timezone

Overview

Timetable

Registration

Participant List

Local Information

This event is a 2-day workshop to explore new opportunities at the next generation neutrino experiments, e.g. DUNE, SBN and IceCube, on the campus of the University of Texas at Arlington on Friday April 12 and Saturday April 13, 2019. The participants of the workshop will be a well-balanced mixture of theorists and experimentalists to promote exchanging ideas for various physics opportunities and to discuss necessary tasks demanded to support timely exploitation of the opportunities.

Speakers

- Joushua Berger
- Bhaskar Dutta
- Doojin Kim
- More to confirm...

Organizing Committee:

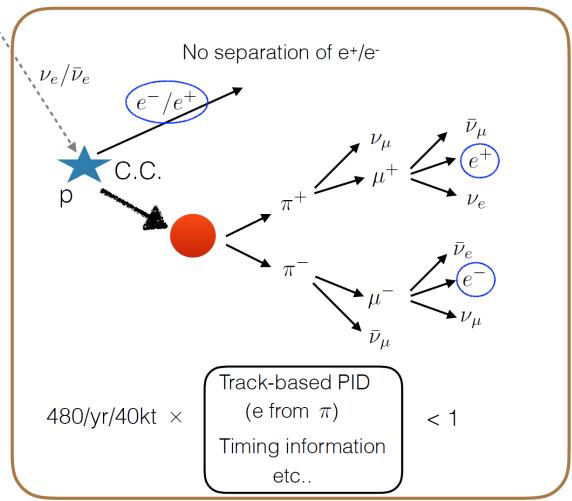
• Conference committee

Jaehoon Yu (Chair) Doojin Kim (Co-chair)

Program committee

Andre de Gouvea (Chair)
Alexandre Sousa (Co-chair)
Animesh Chatterjee
Pedro A.N. Machado
Jong-Chul Park
Seodong Shin
Yun-Tse Tsai

Supported by DOE


Back-Up

Potential BGs: Neutrino-induced

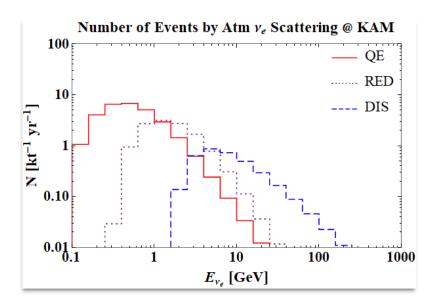
e.g., primary: e-scattering, secondary e+ e-

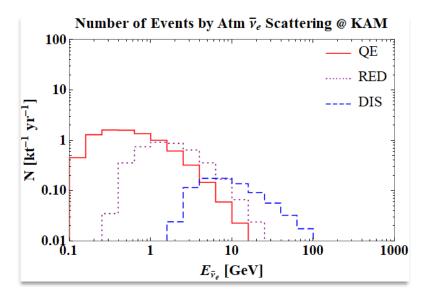
Fiducial volume

Work in progress

 Other subdominant bkg. negligible

N.C. events (smaller)


 ν_{μ} : accompanying μ


 ν_{τ} : too small flux

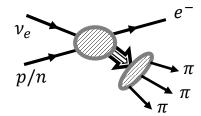
- Zero-bkg. is easily achievable
- (quasi-elastic) proton scattering: less bkg.

Expected Number of v-induced Events

 \bullet v_e flux [SK, 1502.03916] \otimes v_e cross section [Formaggio, Zeller, 1305.7513]

- ✓ Most DIS events result in messy final states, not mimicking signal events &
 - A majority of resonance event may create a few mesons in the final state

[Formaggio, Zeller, 1305.7513]


- → 12.2 events/kt/yr are potentially relevant.
- ✓ PID, timing information, vertex resolution, etc. can suppress such events significantly. → Zero-BG is achievable!

Potential BGs: Neutrinos

Table 4.3: Atmospheric neutrino event rates including oscillations in $350\,\mathrm{kt}\cdot\mathrm{year}$ with a LArTPC, fully or partially contained in the detector fiducial volume.

Sample	Event Rate
fully contained electron-like sample	14,053
fully contained muon-like sample	20,853
partially contained muon-like sample	6,871

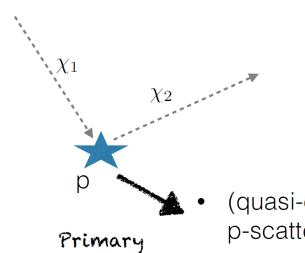
~40.2/yr/kt: may contain multi-track events

[DUNE CDR-Vol.2 (2015)]

	SK-I		SK-II		SK-III		SK-IV	
	Data	MC	Data	MC	Data	MC	Data	MC
FC sub-GeV								
single-ring								
e-like								
0-decay	2992	2705.4	1573	1445.4	1092	945.3	2098	1934.9
1-decay	301	248.1	172	138.9	118	85.3	243	198.4
π^0 -like	176	160.0	111	96.3	58	53.8	116	96.2
μ -like								
0-decay	1025	893.7	561	501.9	336	311.8	405	366.3
1-decay	2012	1883.0	1037	1006.7	742	664.1	1833	1654.1
2-decay	147	130.4	86	71.3	61	46.6	174	132.2
2-ring π^0 -like	524	492.8	266	259.8	182	172.2	380	355.9
FC multi-GeV								
single-ring								
$ u_e$ -like	191	152.8	79	78.4	68	54.9	156	135.9
$\overline{\nu}_e$ -like	665	656.2	317	349.5	206	231.6	423	432.8
μ -like	712	775.3	400	415.7	238	266.4	420	554.8
multi-ring								
$ u_e$ -like	216	224.7	143	121.9	65	81.8	175	161.9
$\overline{\nu}_e$ -like	227	219.7	134	121.1	80	72.4	212	179.1
μ -like	603	640.1	337	337.0	228	231.4	479	499.0

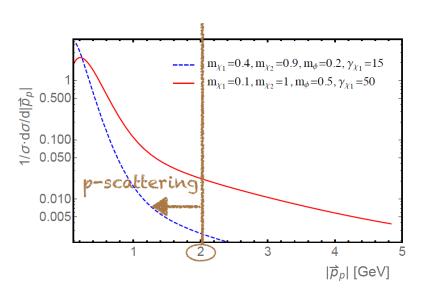
[Super-Kamiokande (2012)]

Single-track candidates: 32.4 + 8.8 = 41.2 / yr/kt, while total e-like events are 49.9 / yr/kt. (Note that SK takes e-like e vents with $E > \sim 10 \text{ MeV}$.)


⇒ Potential BGs for elastic scattering signal (eBDM) events

Multi-track candidates: 5.2 /yr/kt

- ⇒ Most extra tracks come from mesons which can be identified at LArTPC.
- ⇒ Very likely to be background-free for inelastic scattering signal (*i*BDM) events


BDM Signals: p-scattering vs DIS

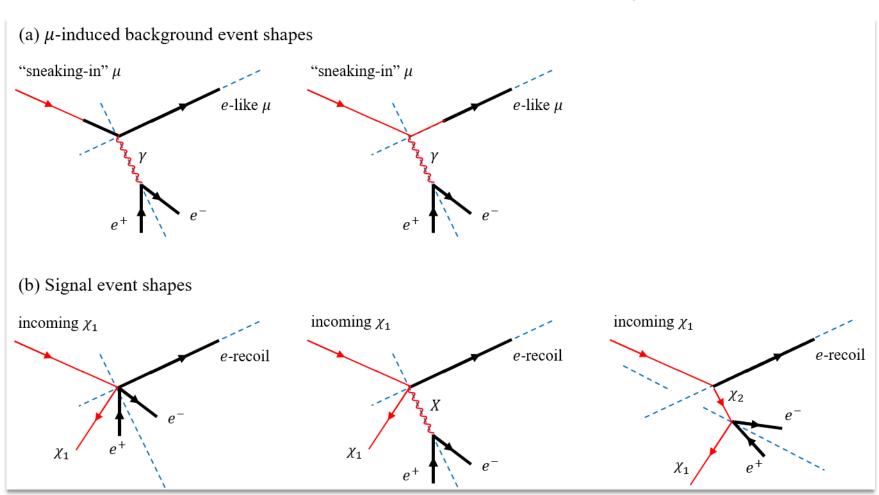
D. Kim, **JCP** & S. Shin [1612.06867]

signature

(quasi-elastic) p-scattering

DIS p-scattering dominates for smaller $m_X < 1$ GeV even for $E_1 > 50$ GeV (unlike neutrino scattering events: mediator W, Z)

$$\frac{d\sigma_{\chi_1 p}}{dp_p} \propto \frac{1}{(p_p^2 + m_X^2)^2}$$


$$\frac{d\sigma_{\rm DIS}}{dxdy} \propto \frac{1}{(Q^2 + m_X^2)^2}$$

Differential cross section peaks p_p ≪ 1 GeV

$$Q > 1.5 \,\mathrm{GeV}$$

Possible Event Shapes (iBDM)

A. Chatterjee, **JCP** et al. [1803.03264]

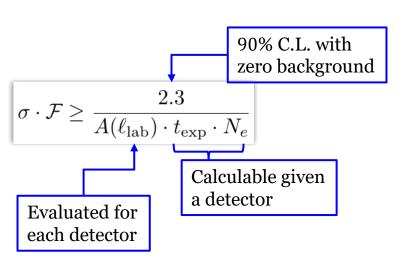
Model-independent Reach

G. Giudice, D. Kim, **JCP** & S. Shin (2017)

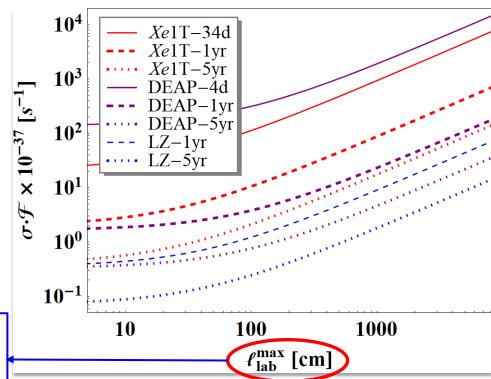
- Non-trivial to find appropriate parameterizations for providing model-independent reaches due to many parameters involved in the model
- ightharpoonup Number of signal events N_{sig} is

$$N_{\text{sig}} = \sigma \cdot \mathcal{F} \cdot A \cdot t_{\text{exp}} \cdot N_e$$

- ✓ σ : scattering cross section between χ_1 (BDM) and electron (target)
- \checkmark \mathcal{F} : flux of incoming (boosted) χ_1
- ✓ *A*: acceptance
- t_{exp} : exposure time
- ✓ N_e : total number of target electrons

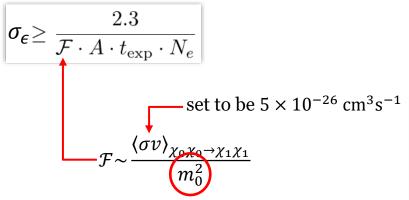

Controllable!

We factored out the acceptance related to the distance between the primary (ER) & the secondary vertices, other factors such as cuts, E_{th} are absorbed into σ_{ϵ} .


Model-independent Reach: Displaced Vertex

G. Giudice, D. Kim, **JCP** & S. Shin (2017)

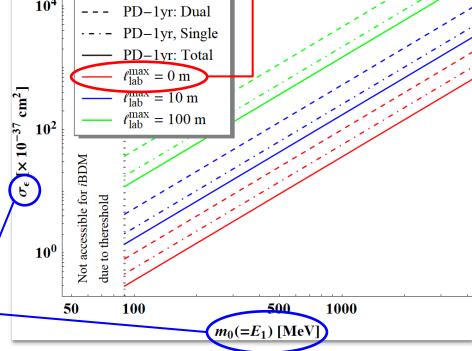
- ❖ Acceptance determined by the distance between the primary & the secondary vertices
 - → (relatively) conservative limit to require two correlated vertices in the fiducial volumes (also to be distinguished from elastic scattering)



 ℓ_{lab} : different event-by-event, so taking ℓ_{lab}^{max} for more conservative limit

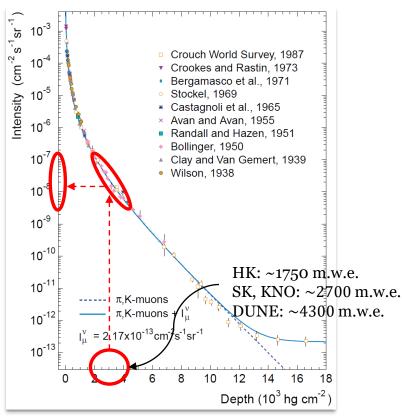
Model-independent Reach: Familiar Form

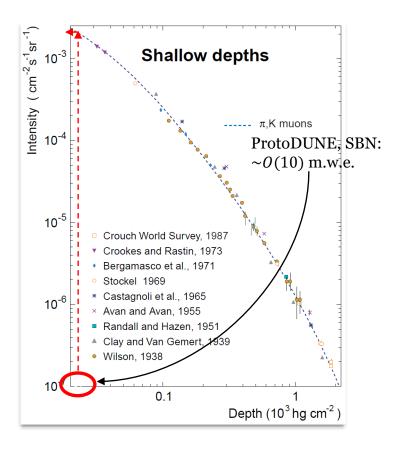
❖ More familiar parameterization is possible with the below modification.


Then having

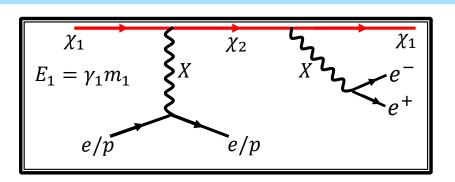
$$\sigma_{\epsilon}$$
 vs. $m_0 (= E_1 = \gamma_1 m_1)$

cf. σ vs. $m_{\rm DM}$ in conventional WIMP searches


Experimental sensitivity can be represented by σ_{ϵ} vs. $m_0 (= E_1)$.


Relevant to signals with overlaid vertices or elastic scattering signals

Potential BGs: High E Muons


- \star Expecting $\sim 10^{4-6}$ more muon flux at ProtoDUNE/SBN than that at HK, SK/KNO, DUNE.
- \star Expecting $\sim 5-50$ more muon flux at HK than that at SK/KNO, DUNE.

[Bugaev et al. (1998)]

Signal Attributes

D. Kim, **JCP** & S. Shin (2016), P. Machado, D. Kim, **JCP** & S. Shin

[1903.xxxxx]

Exp.	e-scattering	Vs. p-scattering			
Energy for primary scattering	Peaking towards smaller momentum transfer				
Threshold energy	Small	Large for Cherenkov Small for LArTPC			
Form factor suppression	N/A	Yes			
Deep inelastic scattering	N/A	Yes			
Energy for secondary process	(Typically) highly boosted	(Typically) less boosted			
Object identification	Highly collimated (in preferred mass spectra) Recoil electron + single object-like e^+e^- pair (assuming $\theta_{res} \sim 3^\circ$)	Reasonably separated (in preferred mass spectra) Recoil proton + well- separated e^+e^- pair			