Flavourful And Phenomenolog

KOREA

10 III II

II

Ē

Eung Jin Chun

W W

Introduction

- Strong CP problem and PQ symmetry \rightarrow "Axion"
- It may be identified with a flavour symmetry.

Wilczek, '82; ... ; Ema, et.al.; Calibbi, et.al., '16

 Signatures and constraints on flavour violating axion couplings.
 F. Bjoerkeroth, EJC, S. King, 1711.05741

1806.00660

 An (approximate) PQ symmetry as an accidental symmetry in a Pati-Salam unification model with A-to-Z flavour group → correlated flavour observables.

Strong CP problem

• Gauge-invariance allows QCD θ term:

$$\mathcal{L}_{\theta} = \theta \frac{g_3^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

• It is a CP-odd $E \cdot B$ term inducing nucleon EDM.

$$d_n \sim \frac{1}{4\pi^2} \frac{e}{m_N} g^\theta_{\pi NN} g_{\pi NN} \, \log\left(\frac{m_N}{m_\pi}\right) < 10^{-26} \mathrm{ecm} \Rightarrow \theta < 10^{-10}$$

• Why is θ so small? \rightarrow Symmetry origin: Peccei-Quinn '77.

PQ mechanism

- Introduce a QCD anomalous global U(1) symmetry which is spontaneously broken at a high scale $F_a \rightarrow$ axion.
- QCD anomaly induces an axion-gluon-gluon coupling:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + (\theta + c_G \frac{a}{F_a}) \frac{g_3^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \quad \Rightarrow \bar{\theta} \equiv \theta + c_G \frac{a}{F_a}$$

- QCD condensation generates axion potential driving the theta value to vanish: $V \sim \Lambda_{QCD}^4(1 \cos \bar{\theta}) \Rightarrow \langle \bar{\theta} \rangle = 0$
- Axion mass is predicted to be

$$m_a \sim \frac{\Lambda_{QCD}^2}{F_a} \sim 10^{-3} \left(\frac{10^{10} \text{GeV}}{F_a}\right) \text{eV}$$

Axion models

• Kim-Shifman-Vainshtein-Zakharov:

 $\mathcal{L}_{KSVZ} = \lambda_Q SQQ^c + h.c.$ PQ charges: 1 0 - 1

• Dine-Fischler-Srednicki-Zhitinitski:

Axion is a Goldstone boson: $S = F_a e^{i\frac{a}{F_a}}$

$$\mathcal{L}_{DFSZ} = y_u q u^c H_u + y_d q d^c H_d + \lambda_H S H_u H_d + h.c.$$

$$0 \ 1 - 1 \qquad 1 \ 0 \ -1$$

• Flavourful PQ symmetry: each generation has different PQ charges

$$\sum_{i} X(q_i) + X(u_i^c) + X(d_i^c) \neq 0$$

Constraints on F_a

- Lower bound from star cooling: low $F_a \rightarrow$ efficient axion emission \rightarrow fast star cooling.
- Upper bound from axion dark matter density: axion potential generated after Λ_{QCD} drives a coherent axion oscillation starting from a initial misaligned field value.

 $10^{10} \text{GeV} \le F_a \le 10^{12} \text{GeV}$

Flavourful axion phenomenology

 PQ charges may be generation-dependent: QCD axion = phase field of flavons
 Feng, et.al., '98

$$\phi_{i} = \frac{v_{i}}{\sqrt{2}} e^{i \frac{x_{i} a}{v_{PQ}}} \qquad a = \sum_{i} x_{i} \frac{v_{i} a_{i}}{v_{PQ}}; \ v_{PQ}^{2} = \sum_{i} x_{i}^{2} v_{i}^{2}$$

• Fermion Yukawa couplings take a general form:

$$-\mathcal{L}_{\text{Yuk}} = e^{i\frac{a}{v_{PQ}}\left(x_{f_{Li}} - x_{f_{Rj}}\right)} M_{ij}^{f} \overline{f_{Li}} f_{Rj}$$

General flavourful axion couplings

• Take the transformation $f_{L/Ri} \rightarrow e^{i\frac{a}{v_{PQ}}x_{f_{L/Ri}}} f_{L/Ri}$ and then go to the mass basis: $f_{L/R} \rightarrow U_{fL/R} f_{L/R}, M^{f} \rightarrow U_{fL}^{\dagger} M^{f} U_{fR} = m^{f}$

$$-\mathcal{L} = \frac{\partial_{\mu}a}{\nu_{PQ}}\overline{f_i}\gamma^{\mu}\left(V_{ij}^f - A_{ij}^f\gamma_5\right)f_j + \frac{a}{f_a}\left(\frac{\alpha_s}{8\pi}G\tilde{G} + c_{a\gamma}\frac{\alpha}{8\pi}F\tilde{F}\right) + m_i^f\overline{f_{Li}}f_{Rj}$$

$$V^{f} = \frac{1}{2} \left(U_{fL}^{\dagger} x_{fL} U_{fL} + U_{fR}^{\dagger} x_{fR} U_{fR} \right)$$
$$A^{f} = \frac{1}{2} \left(U_{fL}^{\dagger} x_{fL} U_{fL} - U_{fR}^{\dagger} x_{fR} U_{fR} \right)$$
$$f_{a} = v_{PQ} / N_{DW} \left(N_{DW} = \text{QCD anomaly} \right)$$

Lepton decays to axion

• LFV decays $l_i \rightarrow l_j a$ with the couplings (V_{ij}^e, A_{ij}^e) : $B(l_i \rightarrow l_j a) \equiv \tilde{c}_{l_i \rightarrow l_j} |C_{ij}^e|^2 \left(\frac{10^{12} GeV}{v_{PQ}}\right)^2$ $\tilde{c}_{l_i \rightarrow l_j} \approx \frac{1}{16\pi\Gamma(l_i)} \frac{m_{l_i}^3}{(10^{12} GeV)^2} \qquad |C_{ij}^e|^2 = |V_{ij}^e|^2 + |A_{ij}^e|^2$

• Angular distribution:

$$\frac{d\Gamma}{d\cos\theta} = \frac{\left|C_{ij}^{e}\right|^{2}}{32\pi} \frac{m_{l_{i}}^{3}}{v_{PQ}^{2}} \left(1 - A P_{l_{i}}\cos\theta\right) \qquad A = \frac{2\Re\left(A_{ij}^{e}V_{ij}^{e^{*}}\right)}{\left|C_{ij}^{e}\right|^{2}} = \begin{cases} A = 0 \text{ (isotropy)}\\ A = -1 \text{ } (V - A \text{ : SM})\\ A = +1 \text{ } (V + A \text{ : our model}) \end{cases}$$

Decay	Branching ratio	Experiment	$\tilde{c}_{\ell_1 \to \ell_2}$	$v_{PQ}/{ m GeV}$
$\mu^+ \to e^+ a$	$<2.6\times10^{-6}$	(A = 0) Jodidio <i>et al</i> [86]	7.82×10^{-11}	$> 5.5 \times 10^9 V_{21}^e $
	$<2.1\times10^{-5}$	(A = 0) TWIST [87]		$> 1.9 \times 10^9 C_{21}^e $
	$< 1.0 \times 10^{-5}$	(A = 1) TWIST [87]		$> 2.8 \times 10^9 C_{21}^e $
	$< 5.8 \times 10^{-5}$	(A = -1) TWIST [87]		$> 1.2 \times 10^9 C_{21}^e $
	$\lesssim 5 \times 10^{-9*}$	Mu3e (future) [88]		$\gtrsim 1 imes 10^{11} C_{21}^e $
$\tau^+ \to e^+ a$	$< 1.5 \times 10^{-2}$	ARGUS [89]	4.92×10^{-14}	$> 1.8 imes 10^6 C_{31}^e $
$\tau^+ \to \mu^+ a$	$<2.6\times10^{-2}$	ARGUS [89]	4.87×10^{-14}	$> 1.4 \times 10^{6} C_{32}^{e} $

Radiative LFV decay: $l_1 \rightarrow l_2 a \gamma$

• Cristal Box: $Br(\mu \rightarrow ea\gamma) < 1.1 \times 10^{-9} \Rightarrow v_{PQ} > 9.4 \times 10^8 |C_{21}^e| \text{ GeV}$ $[Br(\mu \rightarrow e\gamma) < 4.9 \times 10^{-11}]$

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d}x\,\mathrm{d}c_{\theta}} = \frac{\alpha \left|C_{\ell_1\ell_2}^e\right|^2 m_{\ell_1}^3}{32\pi^2 v_{PQ}^2} f(x,c_{\theta}), \ f(x,c_{\theta}) = \frac{1-x(1-c_{\theta})+x^2}{(1-x)(1-c_{\theta})}, \quad x = 2E_{\ell_2}/m_{\ell_1}, \ c_{\theta} \equiv \cos\theta_{2\gamma}$$

• Future search?

Decay	Branching ratio	Experiment
$\mu^+ \to e^+ \gamma$	$<4.2\times10^{-13}$	MEG [92]
	$\lesssim 6 \times 10^{-14*}$	MEG-II (future) [93]
$\tau^- ightarrow e^- \gamma$	$< 3.3 imes 10^{-8}$	BaBar [95]
$\tau^- ightarrow \mu^- \gamma$	$< 4.4 imes 10^{-8}$	BaBar [95]

Meson decay to axion

• Meson decays $P \rightarrow P'a$ from flavourful vector couplings:

$$B(P(q_i) \to P'(q_j) a) = \frac{1}{16\pi\Gamma(P)} \left| V_{ij}^q \right|^2 |f_+(0)|^2 \frac{m_P^3}{v_{PQ}^2} \left(1 - \frac{m_{P'}^2}{m_P^2} \right)^3$$
$$\equiv \tilde{c}_{P \to P'} \left| V_{ij}^q \right|^2 \left(\frac{10^{12} \text{GeV}}{v_{PQ}} \right)^2$$

Decay	Branching ratio	Experiment	$\tilde{c} p_{\rightarrow} p'$	$v_{PQ}/{ m GeV}$
$K^+ \to \pi^+ a$	$< 0.73 imes 10^{-10}$	E949 + E787 [59]	3.51×10^{-11}	$> 6.9 \times 10^{11} V_{21}^d $
	$<0.01\times10^{-10}*$	NA62 (future) [62]		$> 5.9 \times 10^{12} V_{21}^d $
	$< 1.2 \times 10^{-10}$	E949 + E787 [58]		
	$<0.59\times10^{-10}$	E787 [73]		
$K_L^0 \to \pi^0 a$	$< 5 imes 10^{-8}$	KOTO [68]	3.67×10^{-11}	$> 2.7 \times 10^{10} V_{21}^d $
$(K_L^0 o \pi^0 \nu i$	$\bar{\nu}$) (< 2.6 × 10 ⁻⁸)	E391a [66]		
$B^{\pm} \to \pi^{\pm} a$	$< 4.9 imes 10^{-5}$	CLEO [71]	5.30×10^{-13}	$> 1.0 \times 10^8 V_{31}^d $
$(B^{\pm} \rightarrow \pi^{\pm} \nu)$	$\bar{\nu}$) (< 1.0 × 10 ⁻⁴)	BaBar [74]		
	$(< 1.4 \times 10^{-4})$	Belle [75]		
$B^{\pm} \to K^{\pm} a$	$n < 4.9 imes 10^{-5}$	CLEO [71]	7.26×10^{-13}	$> 1.2 \times 10^8 V_{32}^d $
$(B^{\pm} \to K^{\pm}\iota$	$(\bar{\nu})(< 1.3 \times 10^{-5})$	BaBar [76]		
	$(<1.9\times10^{-5})$	Belle [75]		
	$(< 1.5 \times 10^{-6})^*$	Belle-II (future) [77]		
$B^0 \to \pi^0 a$			4.92×10^{-13}	
$(B^0 ightarrow \pi^0 \nu i$	$\bar{\nu})~(< 0.9 imes 10^{-5})$	Belle [75]		$\gtrsim 2.3 imes 10^8 V_{31}^d $
$B^0 \to K^0_{(S)}$	$a < 5.3 imes 10^{-5}$	CLEO [71]	6.74×10^{-13}	$> 1.1 \times 10^8 V_{32}^d $
$(B^0 \to K^0 \nu)$	$\bar{\nu}$) (< 1.3 × 10 ⁻⁵)	Belle [75]		
$D^{\pm} ightarrow \pi^{\pm} a$	< 1		1.11×10^{-13}	$> 3.3 \times 10^5 V_{21}^u $
$D^0 \to \pi^0 a$	< 1		4.33×10^{-14}	$> 2.1 \times 10^5 V_{21}^u $
$D_s^{\pm} \to K^{\pm} a$	<i>i</i> < 1		4.38×10^{-14}	$> 2.1 \times 10^5 V_{21}^u $
$B_s^0 \to \overline{K}{}^0 a$	< 1		3.64×10^{-13}	$> 6.0 imes 10^5 V_{31}^d $

Yonsei 190226

13

Axion-meson mixing

• After QCD condensation,

$$\frac{c_{ij}}{v_{PQ}}\partial_{\mu}a\,\overline{f_{i}}\gamma^{\mu}\gamma_{5}f_{j} \Rightarrow c_{P}\frac{f_{P}}{f_{a}}\partial_{\mu}a\partial^{\mu}P$$

• Kinetic mixing diagonalization & mass re-diagonalizaton:

$$a \rightarrow a + c_P \frac{f_P}{f_a} \frac{m_P^2}{m_P^2 - m_a^2} P$$
, $P \rightarrow P - c_P \frac{f_P}{f_a} \frac{m_a^2}{m_P^2 - m_a^2} a$

mass-dependent mixing

Axion-pion mixing

- For QCD axion, the mixing is negligible $(f_P \ll f_a, m_a \ll m_{\pi})$.
- For ALP, it can lead to sizable contribution to $K^+ \rightarrow \pi^+ a \& a \rightarrow \gamma \gamma$ induced from $K^+ \rightarrow \pi^+ \pi^0 \& \pi^0 \rightarrow \gamma \gamma$:

$$\Gamma(K^+ \to \pi^+ a) \approx \left(c_\pi \frac{f_\pi}{f_a} \frac{m_a^2}{m_\pi^2 - m_a^2} \right)^2 \Gamma(K^+ \to \pi^+ \pi^0)$$

$$\Gamma(a \to \gamma \gamma) \approx \left(c_\pi \frac{f_\pi}{f_a} \frac{m_a^2}{m_\pi^2 - m_a^2} \right)^2 \left(\frac{m_a}{m_\pi} \right)^3 \Gamma(\pi^0 \to \gamma \gamma) \Rightarrow \left(g_{a\gamma} \right)_{mix} = \frac{\alpha}{\pi} \frac{c_\pi m_a^2}{m_\pi^2 - m_a^2} \frac{1}{f_a}$$

• $B(K^+ \to \pi^+ a) < 10^{-10}$ puts a limit:

$$f_a > 4 \left(\frac{c_{\pi} m_a^2}{m_{\pi}^2 - m_a^2}\right) TeV \Rightarrow \left(g_{a\gamma}\right)_{mix} < 5.8 \times 10^{-7} \ GeV^{-1} \ \text{for} \ m_a < 110 MeV$$

Impact on neutral meson mass splitting

• Flavourful axion couplings $(A_{12,23}^{u,d})$ induces mixing with heavy mesons (K, D, B) contributing to their mass splitting:

	$\Delta m_P \approx \eta_P ^2 m_P = c_P ^2 \frac{J}{v}$	$\frac{f_P^2}{p_Q^2}m_P$
ystem	$(\Delta m_P)_{\rm exp}/{ m MeV}$	$v_{PQ}/{ m GeV}$
$K^0 - \overline{K}^0$	$(3.484 \pm 0.006) \times 10^{-12}$	$\gtrsim 2 \times 10^6 c_{K^0} $
$D^0 - \overline{D}^0$	$(6.25 {}^{+2.70}_{-2.90}) \times 10^{-12}$	$\gtrsim 4 \times 10^6 c_{D^0} $
$B^0 - \overline{B}^0$	$(3.333 \pm 0.013) \times 10^{-10}$	$\gtrsim 8 \times 10^5 c_{B^0} $
$B^0_s - \overline{B}^0_s$	$(1.1688 \pm 0.0014) \times 10^{-8}$	$\gtrsim 1 \times 10^5 c_{B^0} $

A-to-Z flavour Pati-Salam Model

King, '14

u,d

• A Pati-Salam unification model where an approximate PQ symmetry, arises accidentally from discrete flavour symmetry $A_4 \times Z_5 \times Z_3 \times Z_5'$:

7

Protection up to D=10

	Field	G_{PS}	A_4	\mathbb{Z}_5	\mathbb{Z}_3	$\left(\mathbb{Z}_{5}'\right)$	R	$U(1)_{PQ}$
Fermions	F	(4, 2, 1)	3	1	1	1	1	0
I CITIIOTIS	$F^{c}_{1,2,3}$	(4, 1, 2)	1	$\alpha, \alpha^3, 1$	$eta,eta^2,1$	$\gamma^3, \gamma^4, 1$	1	-2, -1, 0
	$\overline{H^c}$	(4, 1, 2)	1	1	1	1	0	0
	H^{c}	$(\bar{4}, 1, 2)$	1	1	1	1	0	0
Elavonc	$\phi^u_{1,2}$	(1, 1, 1)	3	α^4, α^2	β^2, β	γ^2, γ	0	2, 1
Flavoris	$\phi^{d'}_{1,2}$	(1,1,1)	3	α^{3}, α	eta^2,eta	γ^2,γ	0	2, 1
	h_3	(1, 2, 2)	3	1	1	1	0	0
	h_u	(1, 2, 2)	1"	α	1	1	0	0
Higgses	h_{15}^{u}	(15, 2, 2)	1	α	1	1	0	0
00	h_d	(1, 2, 2)	1'	α^{3}	1	1	0	0
	h^{d}_{15}	(15, 2, 2)	1'	α^4	1	1	0	0
	Σ_u	(1, 1, 1)	1"	α	1	1	0	0
	Σ_d	(1,1,1)	1'	α^{3}	1	1	0	0
	Σ^d_{15}	(15, 1, 1)	1'	α^2	1	1	0	0
	ξ	(1, 1, 1)	1	α^4	eta^{2}	γ^2	0	2
Messengers	$X_{F_{1,3}''}$	(4, 2, 1)	1''	$^{lpha,lpha^3}$	β^2, β	γ^2,γ	1	2, 1
	$X_{F_{1,3}'}$	(4, 2, 1)	1'	$^{lpha,lpha^3}$	eta,eta^{2}	γ,γ^2	1	1, 2
	$X_{\overline{F_i}}$	$(\bar{4}, 2, 1)$	1	$lpha^i$	eta,eta,eta^2,eta^2	$\gamma^3,\gamma^3,\gamma^4,\gamma^4$	1	-2, -2, -1, -1
	X_{ξ_i}	(1, 1, 1)	1	$lpha^i$	$\beta,\beta,\beta^2,\beta^2,1$	$\gamma^3, \gamma, \gamma^4, \gamma^2, 1$	1	-2, 1, -1, 2, 0
	$\overline{\phi}^u_{1,2}$	(1, 1, 1)	3	α, α^3	eta,eta^{2}	γ^3, γ^4	0	-2, -1
	$\overline{\phi}^{d'}_{1,2}$	(1, 1, 1)	3	α^2, α^4	eta,eta^{2}	γ^3, γ^4	0	-2, -1
	$\bar{\xi}$	(1, 1, 1)	1	lpha	β	γ^3	0	-2

$$x_{f_L} = (0,0,0)$$

 $x_{f_R} = (2,1,0)$
 $N_{DW} = 6$

"Family-dependent DFSZ"

Axion-dependent Yukawa

• Flavon fields $\phi_{1,2}^{u,d}$ and right-handed fermions $F_{1,2,3}^c$ are charged under the PQ symmetry:

$$\begin{aligned} -\mathcal{L}_{Y} &= \lambda_{3}(\bar{f} \cdot \langle h_{3} \rangle^{*}) \underbrace{f_{R3}}_{R3} + \frac{\lambda_{1u}v_{u}}{\sqrt{2}v_{\Sigma_{u}}} (\bar{u}_{L} \cdot \langle \varphi_{1}^{u} \rangle^{*}) \underbrace{u_{R1}}_{Q} \exp\left[\frac{-ix_{\varphi_{1}^{u}a}}{v_{PQ}}\right] & x_{\varphi_{1}^{u,d}} = 2 \\ &+ \frac{\lambda_{2u}v_{u}}{\sqrt{2}v_{\Sigma_{u}}} (\bar{u}_{L} \cdot \langle \varphi_{2}^{u} \rangle^{*}) \underbrace{u_{R2}}_{Q} \exp\left[\frac{-ix_{\varphi_{2}^{u}a}}{v_{PQ}}\right] + \frac{\lambda_{1d}v_{d}}{\sqrt{2}v_{\Sigma_{d}}} (\bar{d}_{L} \cdot \langle \varphi_{1}^{d} \rangle^{*}) \underbrace{d_{R1}}_{Q} \exp\left[\frac{-ix_{\varphi_{1}^{u}a}}{v_{PQ}}\right] \\ &+ \frac{\lambda_{2d}v_{d}}{\sqrt{2}v_{\Sigma_{d}}} (\bar{d}_{L} \cdot \langle \varphi_{2}^{d} \rangle^{*}) \underbrace{d_{R2}}_{Q} \exp\left[\frac{-ix_{\varphi_{2}^{d}a}}{v_{PQ}}\right] + \frac{\lambda_{ud}v_{d}}{\sqrt{2}v_{\Sigma_{d}}} (\bar{d}_{L} \cdot \langle \varphi_{1}^{u} \rangle^{*}) \underbrace{d_{R1}}_{Q} \exp\left[\frac{-ix_{\varphi_{1}^{u}a}}{v_{PQ}}\right] \\ &+ \left\{ d_{L} \to e_{L}, d_{R} \to e_{R}, \lambda_{1d} \to \tilde{\lambda}_{1d}, \lambda_{2d} \to \tilde{\lambda}_{2d}, \lambda_{ud} \to \tilde{\lambda}_{ud} \right\} + \text{h.c.} \\ & x_{\varphi_{2}^{u,d}} = 1 \end{aligned}$$

Fitting fermion masses and mixing

• Fermion mass matrices from 15 input parameters:

$$M^{u} = v_{u} \begin{pmatrix} 0 & b & \epsilon_{13}c \\ a & 4b & \epsilon_{23}c \\ a & 2b & c \end{pmatrix}, \quad M^{d} = v_{d} \begin{pmatrix} y_{d}^{0} & 0 & 0 \\ By_{d}^{0} & y_{s}^{0} & 0 \\ By_{d}^{0} & 0 & y_{b}^{0} \end{pmatrix}, \quad M^{e} = v_{d} \begin{pmatrix} -(y_{d}^{0}/3) & 0 & 0 \\ By_{d}^{0} & xy_{s}^{0} & 0 \\ By_{d}^{0} & 0 & y_{b}^{0} \end{pmatrix}$$
$$m^{\nu} = m_{a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{b}e^{i\eta} \begin{pmatrix} 1 & 4 & 2 \\ 4 & 16 & 8 \\ 2 & 8 & 4 \end{pmatrix} + m_{c}e^{i\xi} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \Rightarrow \text{Specific flavour prediction for axion}$$

• Best-fit:	Parameter	Value	Parameter	Value	Parameter	Value
	$a / 10^{-5}$	$1.246 e^{4.047i}$	$\epsilon_{13} / 10^{-3}$	$6.215 e^{2.434i}$	$m_a \ /\mathrm{meV}$	3.646
	$b / 10^{-3}$	$3.438 e^{2.080i}$	$\epsilon_{23} / 10^{-2}$	$2.888 e^{3.867i}$	$m_b \ /{ m meV}$	1.935
	c	-0.545	В	$10.20 e^{2.777i}$	$m_c \ /{ m meV}$	1.151
	$y_d^0 / 10^{-5}$	$3.053 e^{4.816i}$	x	5.880	η	2.592
	$y_s^0 /10^{-4}$	$3.560 e^{2.097i}$			ξ	2.039
	$y_b^0 / 10^{-2}$	3.607				

Our model Predictions

• Best-fit values for axion-fermion couplings:

• Correlated probes: $R_{\mu/K} \equiv \frac{\operatorname{Br}(\mu^+ \to e^+ a)}{\operatorname{Br}(K^+ \to \pi^+ a)} \simeq 4.45 \frac{|V_{21}^e|^2}{|V_{21}^d|^2} \approx 31 e^{-1.8\sqrt{x}} \approx 0.38.$

Conclusion

- Axion solves the strong CP and dark matter problem.
- A specific Pati-Salam unified model is worked out to show an automatic PQ symmetry guaranteed by a flavour symmetry.
- It leads to interesting flavourful axion phenomenology.
- Rare Kaon and muon decays, $K^+ \rightarrow \pi^+ a \& \mu \rightarrow e a$, provide sensitive probes for QCD axion.
- More numerous flavour observables can be looked for axionlike particles.