Studying Gauginos in Supersymmetric Model at Future 100 TeV pp Collider

Takeo Moroi (Tokyo)

Asai, Chigusa, Kaji, TM, Saito, Sawada, Tanaka, Terashi & Uno arXiv:1901.10389 [hep-ph]

YUCHE 2019 @ Yonsei University (2019.02.26)

1. Introduction

SUSY particles may be quite heavy (even if they exist)

Do we have a chance to study SUSY particles at colliders?

 \Rightarrow Future circular colliders (FCCs) with $E_{\rm CM} \sim 100$ TeV may be an option

Today, I would like to discuss:

- FCC studies of pure gravity mediation model of SUSY breaking based on anomaly mediation
- In particular, measurements of gaugino masses

<u>Outline</u>

- 1. Introduction
- 2. Model
- 3. Gauginos at FCCs
- 4. Gaugino Mass Determinations
- 5. Summary

2. Model

Mass spectrum of our interest

- Sfermion and Higgsino masses are of $O(100)~{\rm TeV}$
 - \Rightarrow Heavy stops are good for $m_h\simeq 125~{\rm GeV}$
 - \Rightarrow SUSY CP / flavor problems are relaxed
- Gaugino masses are loop suppressed, and are of O(1) TeV
 - \Rightarrow Wino can be dark matter
 - \Rightarrow Gauginos are primary targets of collider experiments

Such a mass spectrum is phenomenologically viable

 \Rightarrow What is the underlying theory?

Anomaly mediation + pure gravity mediation

[Giudice, Luty, Murayama & Rattazzi; Randall & Sundrum; Ibe, TM & Yanagida; Ibe & Yanagida; Arkani-Hamed et al.]

- The most general supergravity Lagrangian with Plancksuppressed interactions
- No singlet in SUSY breaking sector
- Scalar masses are of the order of the gravitino mass $m_{3/2}$

Gaugino masses in the PGM model

• Wino (gaugino for $SU(2)_L$) is likely to be the LSP

•
$$\left| \frac{10g_1^2}{3g_3^2} m_{\tilde{g}} - \frac{g_1^2}{g_2^2} m_{\tilde{W}} \right| \lesssim m_{\tilde{B}} \lesssim \frac{10g_1^2}{3g_3^2} m_{\tilde{g}} + \frac{g_1^2}{g_2^2} m_{\tilde{W}}$$

Motivation 1: Wino LSP as dark matter

- Thermally produced Wino can be DM, if $m_{\tilde{W}} \simeq 2.9$ TeV \Rightarrow Can we test such a Wino at colliders?
- Non-thermal production of Wino DM is also possible

Motivation 2: Heavy stops are good for $m_h \simeq 125 \text{ GeV}$

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{2\pi^2 v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

[Okada, Yamaguchi & Yanagida; Ellis, Ridolfi & Zwirner; Haber & Hempfling]

 \Rightarrow The stop masses of O(10-1000) TeV are suggested

Motivation 3: Cosmological gravitino problem

- \Rightarrow With $m_{3/2} \gtrsim 10$ TeV, the reheating temperature as high as $T_{\rm R} \gtrsim 10^9$ GeV is possible
- ⇒ Simple thermal leptogenesis may work [Buchmuller, Di Bari & Plumacher; Giudice, Notari, Raidal, Riotto & Strumia]

Summary of Motivations

- Higgs mass of $m_h \simeq 125~{\rm GeV}$ is easily realized
- Wino can be the LSP, which is a viable candidate of DM
- Cosmological gravitino problem is easily avoided
- Gauge coupling unification is OK
- SUSY CP / flavor problems may be avoided

Hierarchy between the SUSY scale and the EW scale is sizable

⇒ It's better than the hierarchy between Planck scale and the EW scale

3. Gauginos at FCCs

Let us consider

- How and how well we can determine gaugino masses
- Possibility to test the scenario

Sample points for MC studies $(m_{\tilde{W}} < m_{\tilde{B}} < m_{\tilde{g}})$

	Point 1	Point 2
$m_{3/2}$ [TeV]	250	302
L [TeV]	800	756
$m_{ ilde{B}}$ [TeV]	3.7	4.1
$m_{ ilde W}^-$ [TeV]	2.9	2.9
$m_{\tilde{g}}$ [TeV]	6.0	7.0
$\sigma(pp \to \tilde{g}\tilde{g})$ [fb]	7.9	2.7

Gluino decay

 $\tilde{g} \rightarrow \bar{q}q\tilde{B}$, $\bar{q}q\tilde{W}$

Assumptions:

- $Br(\tilde{g} \to q\bar{q}\tilde{W}) = Br(\tilde{g} \to q\bar{q}\tilde{B}) = 0.5$
- Gluino decays into all the generations universally

Bino decay

 $\tilde{B} \to W^{\mp} \tilde{W}^{\pm}$, $h \tilde{W}^0$

In the sample point of our choice:

- $\tilde{B} \to \tilde{W}^{\pm} W^{\mp}$ dominates
- $\tilde{B} \to f \bar{f} \tilde{W}^{\pm}$ is negligible

Charged Wino decay: $\tilde{W}^{\pm} \rightarrow \tilde{W}^0 \pi^{\pm}$

Charged Wino may be identified as short high- p_T track

- $\tilde{W}^{\pm}\text{-}\mathrm{tracks}$ can be reconstructed by inner pixel detector
- Requiring \tilde{W}^{\pm} -like tracks, SM background can be reduced

Long-lived \tilde{W}^{\pm} at FCC-hh: case with $pp \to \tilde{W}^{\pm} \tilde{W}^{\pm,0} j$

• Inner pixel detector has several layers at $L_T \lesssim 10 - 15$ cm

[Saito, Sawada, Terashi & Asai 1901.02987]

- FCC-hh may cover the Wino mass up to 4-5 TeV
- Sensitivity depends on the detector layout

The events of our interest: gluino pair production

- Multi-jets
- Charged Wino track(s), identified by the pixel detector

Expectation for the pixel detector

- 4th or 5th layer at $L_T \sim 10 15$ cm
- Timing information is available: $\delta t \sim O(10 \text{ ps})$

Timing information can be converted to the Wino velocity

4. Gaugino Mass Determinations

Flow-chart of our MC study

Requirements on signal events:

- Two \tilde{W}^{\pm} -tracks with $L_T > 10$ cm and $|\eta| < 1.5$
- $p_T^{(\text{miss})} > 1 \text{ TeV}$

 $p_T^{(miss)}$: Missing p_T evaluated only from jets

We assume:

- Charged Wino can be identified if $L_T > 10 \text{ cm}$
- Velocity resolution of \tilde{W}^{\pm} is 6~%
- There is no error in the charged Wino direction

Wino track can also be used to eliminate SM backgrounds

- \Rightarrow Fake track rate $\sim {\cal O}(10^{-5})$ per track
- \Rightarrow SM backgrounds are negligible

Measurement 1: Wino mass

- Wino velocity may be determined with timing information
- Momenta of Winos can be estimated using MET information (if two Wino tracks are observed)
 - ⇔ Momentum is assumed to be carried away by jets and Winos

We determine Wino momenta by solving:

$$\begin{split} c_1 \vec{n}_{\tilde{W}_1,T} + c_2 \vec{n}_{\tilde{W}_2,T} &= -\vec{p}_{\text{miss}} \equiv -\sum_{i:\text{jets}} \vec{p}_{i,T} \\ \vec{p}_{\tilde{W}_1} &= c_1 \vec{n}_{\tilde{W}_1} \\ \vec{p}_{\tilde{W}_2} &= c_2 \vec{n}_{\tilde{W}_2} \end{split}$$

Wino mass in terms of observables:

$$m_{\tilde{W}}^{(\mathrm{rec})} = \frac{1}{\beta_{\tilde{W}^{\pm}} \gamma_{\tilde{W}^{\pm}}} \left| \vec{p}_{\tilde{W}^{\pm}} \right| \equiv \frac{\sqrt{1 - \beta_{\tilde{W}^{\pm}}^2}}{\beta_{\tilde{W}^{\pm}}} \left| \vec{p}_{\tilde{W}^{\pm}} \right|$$

We use the events with:

- \tilde{W}^{\pm} with $L_T > 10$ cm and $\beta^{(obs)} < 0.8$ for reconstruction
- 2nd \tilde{W}^{\pm} track for background reduction
- No isolated lepton

Sample Point 1 Sample Point 2 histmwno1 histmwno1 30F # / 200 GeV / 10 ab⁻¹ # / 200 GeV / 10 ab⁻¹ Entries 250 Entries 103 10 2952 Mean 3104 Mean 920.8 Std Dev Std Dev 1056 Mwno(Gauss) 2911 ± 54.8 Mwno(Gauss) 3119 ± 101.9 8 695.8 ± 54.8 σ σ 752.6 ± 105.3 23.2 ± 2.2 7.987 ± 1.259 А А С 0.7339 ± 0.2527 С 0.4189 ± 0.2033 10 2 5 0 0 2000 6000 2000 6000 4000 4000 0 0 Wino Mass (GeV) Wino Mass (GeV)

Reconstructed Wino mass

- True value: 2900 GeV
- Fit: Gaussian + constant

Reconstructed Wino mass: $pp \rightarrow \tilde{W}^+ \tilde{W}^- j$

• True Wino mass: 2900 GeV

•
$$eta_{ ilde{W}^{\pm}} < 0.8$$

• $p_T^{({
m miss})} > 1~{
m TeV}$

 $\Rightarrow \delta m_{ ilde W}^{({
m obs})} \simeq 130~{
m GeV}$ (with ${\cal L}=30~{
m ab}^{-1}$)

Measurement 2: Bino mass

- Wino momentum is known (if L_T is long enough)
- \bullet $W\mbox{-jet}$ may be identified as a fat jet

 \Rightarrow We use jets with $m_j \sim m_W$

Reconstructed Bino mass (assuming $m_{\tilde{W}}$ is known)

$$m_{\tilde{B}}^{(\mathrm{rec})} = \sqrt{(m_{\tilde{W}} u_{\tilde{W}^{\pm}} + p_W)^2} \quad \mathrm{with} \quad u_{\tilde{W}^{\pm}} = (\gamma_{\tilde{W}^{\pm}}, \beta_{\tilde{W}^{\pm}} \gamma_{\tilde{W}^{\pm}} \vec{n}_{\tilde{W}^{\pm}})$$

Jet mass distribution (for Point 1)

We require:

- \tilde{W}^{\pm} with $L_T > 10$ cm and $\beta^{(obs)} < 0.9$ for reconstruction
- Jet with 70 GeV $< m_j < 90$ GeV

Reconstructed Bino mass (using true Wino mass)

- True value: 3660 GeV (Pt.1) / 4060 GeV (Pt.2)
- Fit: Gaussian + constant

Measurement 3: Gluino mass (with hemisphere analysis)

Reconstructed gluino mass

$$m_{\tilde{g}}^{(\mathrm{rec})} = \sqrt{P_{\mathrm{Hemisphere}}^2}$$
 with $P_{\mathrm{Hemisphere}} \equiv P_{\tilde{W}^{\pm}} + \sum_{j \in H} p_j$

Hemisphere analysis with two observed Wino tracks

- Two charged Winos are assigned to different hemispheres: $\tilde{W}_A^{\pm} \in H_A$ (A = 1, 2)
- For each high p_T jet:

$$\begin{cases} j_i \in H_1: \text{ if } d(p_{H_1}, p_{j_i}) < d(p_{H_2}, p_{j_i}) \\ j_i \in H_2: \text{ if } d(p_{H_2}, p_{j_i}) < d(p_{H_1}, p_{j_i}) \end{cases}$$

Momentum of A-th hemisphere H_A

$$p_{H_A} = p_{\tilde{W}_A^{\pm}} + \sum_{j_i \in H_A} p_{j_i}$$

Distance function

[See De Roeck (Editor), CMS Physics TDR]

$$d(p_H, p_j) = \frac{(E_H - |\mathbf{p}_H| \cos \theta_{Hj}) E_H}{(E_H + E_j)^2}$$

We study the invariant mass of hemispheres containing \tilde{W}^{\pm}

- Two long enough \tilde{W}^\pm tracks
- No isolated lepton
- \bullet We use jets with $|\eta|<2$

Hemisphere analysis with two charged Winos

- Momenta of Winos are determined using missing momentum information
- Each hemisphere contains one \tilde{W}^{\pm} (and jets)
- Invariant mass of the hemisphere is regarded as (reconstructed) gluino mass

Reconstructed gluino mass (with true Wino mass):

- True value: 6000 GeV (Pt.1) / 7000 GeV (Pt.2)
- Fit: Gaussian + constant

5. Summary

Gaugino mass determinations may be possible

Sample Point 1 (with $\mathcal{L} = 10 \text{ ab}^{-1}$):

	$\delta m_{ ilde{B}}$	$\delta m_{ ilde W}$	$\delta m_{ ilde{g}}$
$\delta m_{\tilde{X}}^{(\rm stat)}$	8 GeV	$61{\rm GeV}$	$59\mathrm{GeV}$
Due to $\delta m_{ ilde W}$	61 GeV	—	$61{\rm GeV}$
Total	62GeV	$61{\rm GeV}$	$85\mathrm{GeV}$

 \Rightarrow Test of the model

$$\left. \frac{10g_1^2}{3g_3^2} m_{\tilde{g}} - \frac{g_1^2}{g_2^2} m_{\tilde{W}} \right| \lesssim m_{\tilde{B}} \lesssim \frac{10g_1^2}{3g_3^2} m_{\tilde{g}} + \frac{g_1^2}{g_2^2} m_{\tilde{W}}$$

Information about the mechanism of SUSY breaking

 \Rightarrow Determination of $m_{3/2}$, |L|, \cdots

 \Rightarrow Impact on cosmology

FCC-hh can have significant impact on BSM studies

- Discovery
- Measurements