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Introduction

1. QCD vacuum and Condensate

According to QM, vacuum is not empty. It is filled with quantum
fluctuations of all possible kinds of particles.

Especially, when interactions are strong(non-perturbative), fluctuation
can condense into a non-vanishing vacuum exp. value of quark and
gluon operators which is called as “condensate”.

qqq:) :qy*q:) -
) (s FO GGl Gy )

ex) quark condensate (:qq:) (:

gluon condensate (: Gy Gy

These vacuum condensates can act as a medium and have important
roles.

For example, quark masses receive additional mass from vacuum
condensates and exceed the mass believed to be generated by the

Higgs.
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2. QCD sum rule and Condensate

One approach to study non-perturbative physics is considering
a correlation function(QCD sum rule) defined by

M(g?) =i [d* 7 (0|T[j(2)j(2)]|0) = £,Crn(g*)(On)
= Co(¢*)(I) + C1(g*)my(I) + Cs(q*){qq)
+ C1(¢*) (G G*) 4+ CE(q%)mg(dq) + ...

This represents an amplitude of particle(hadron) propagating
from 0 to x. Current j(x) has the same quantum number with a

. . . . B quark
particle under investigation. j“”%m)

This is parameterized by vacuum condensates of quark and
gluon fields.
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3. Diagrams and Condensate

Condensates act as a medium, a particle can be annihilated by
a virtual particle from the QCD vacuum and another real
particle is created somewhere else.

-> Disconnected diagram

QCD Quark- perturbative

Propagator contribution

 (qq) X (F G GH) ﬁ
+—X  X—— +QQ0X  XQQu + X— ...
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W

non-perturbative contribution
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4. Dimension6 Gluon operators

Dim 6 gauge invariant operators can be made of
"3x Gy or “2xD,and 2x G,,"

By index symmetry and Bianchi identity, 2 scalar* and 3
twist4 operators are independent.

rvo?

Ol = DsG%, D, G

[1a% U

Twist4 : 02 = DG, D,G%,

QL

03 = D;G%, D, G,

o

Scalar :fabCGZ,,GzaGC D,G,.,D,G,

These operators are Scale dependent&Mixing —
Renormalization — Non-mixing&Scaleinvariant operators

* S. Narison and R. Tarrach, Phys. Lett. B 125, 217 (1983)
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5. Operator Renormalization

To get renormalization factor ., — Z; 0%
we considered the Green's ftns with 3 external fields.

(AR ADASOiR) = Zii (AR ALASODR) + > | Zij (A5 AL ASOf )

l | l
renormalized bare operator mixing
operator

in the SU(N) pure gauge theory + Dimensional
regularization + Back ground field method**

**|.F. Abbott, Nucl. Phys. B185, 189 (1981)
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6. Back ground field method

For simple calculation, introduce new back ground field
and impose it to retain gauge invariance of the effective

action T[A] = —iInZ[]] - ] - A.

Z[A] = Z[A HQ)]
N\ backgroundfield

1PI diagrams satisfy the naive Ward identity. Even
unphysical quantities like divergent counterterms take a
gauge invariant form.

Calculations are simplified by gauge invariance.

Nucl. Pys. B185 (1981) 189
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6. Back ground field method

From S[A+Q], <AA>->ordinary propagator, <Q...>~interaction.
All external lines are background field Q.

All internal lines are ordinary gauge field A.

a, 1L
af gbe [ng(p-r-é—q )y
P |
WY, tovh (r-aly + gy (@-pegr)y ]
b,v c, A

-igg [fdbl fxcd (gp_kgyp "'gF,P gyk";— gp_y gkp )

+ fodx fxbe (gp.v Do “9ul 9up - &LgFP %W )

+facx fxbd(guy IAp - 9up JvA )]



Feynman rules = operator insertion

Operators are inserted with zero momentum.

2 gluon vertex : F OO O O0U 00U . = (A} ()AL (0)0ap(0))
W a %a\;% ﬁﬁ ,
3 gluon vertex : é — (A%(p) AL () A5, (1) O (0))

4 gluon vertex : = (A5 ()AL (@) AS (1) AL (k) O 5(0))




Feynman rules - for O1
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— 4p p -

1

— ZQQfabmfcdm(élkap’Bg}‘”ng +ar@pP g AR gl 4 4 gB grH gV W | 4r @ gBgrgvw | g gPR g A gv e 4 g gBr g gvw

gcxﬁp)\kpng _ 2gcx,8q)\kp.guw _ gaﬁqkrung _ gaﬁg)\pk . pgi/w n Sg&)\gﬁp

+4gcx)\p,8k,ung4ga)\q,8k;zng _
vw 495\:)\pﬁgpwkv _

g¥B g M p  rgVW _ goB Al g 4goA gB ghwiV 4 gaBpAghw

A v
k- qg¥% — 3g%F grHp . gqgV¥ —
2g%Bprghwpl 4 9g@B gAY bW | 4p® PV (pA gHw
“ - SgaAgﬁ”kqu + anﬁghpkvqw) + (23 other terms)

kY 4 g@P g ghW ¥ — — g™ W) 4 4%V pP (pr gHW _ gMHpW)
Ar@ gBrgAvgw | qaB AV R gw | g@B AV kg

_ 4kcxg,8pg)\qu _

For each vertex, there are (# of external gluon fields)! ways
of contraction. O2 and O3 are similar.



One loop Feynman Diagrams

There are five diagrams contributing to the
renormalization for each operators. ® means the inserted
operator with zero momentum.



One loop Calculation

Diagrammatically,

3 X g ey, QY
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= Zii (AL ALASODR) + > Zij (A5 AL ASOfp)
J#1
= Just one loop calculation



Result = renormalization factors

Ori = Z;j0p; Renormalization factors

1 — 3N g Noag _ 2Noag
( dire 127e 37me \
_ ~ Noag _ Nag
Z'@J o 0 1 3me 247e
Nag __ TNoas )
\ 0 " 67e 1 247e
Thus,
Nag Naog 2N as
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Or | = 01— o O%p
O )\ 0 Nee g )\ 0

To remove Mixing — Diagonalization



Result = Non mixing new operator set

Non-mixing operator sets and New Renormalization factors

(O [ 15 0 0 \ [ 0%
O | = 0 1 (s=vIDNe. 0 0,
\ Ol / \ 0 0 ] — UstvIDNa. | \ 0% /
0’1%3 - O?B

—603 + 2117 1 — 17
Ohp = Oip + Osp + O35
424 8
—653 — 2117 1+ V17
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424 1B 8



Result = scale invariant operators

Scale invariant operator

11Ny .
Because of Z.. =1-—5— , appropriate powers of a; can cancel the

renormalization factor of the operator.

( )

Particularly, in the pure gauge theory, only O1 is relevant because O2
and O3 become zero by EoM(DG=j). Combining with scalar’s result,
we can obtain two(scalar*+twist4) relevant dim 6 scale invariant non

mixing operators.

qbsl — 1l< gfa,cha Gb Gc >

le:as %( 2gfacha Gbﬁch>




Summary

» We calculated the renormalization of the dimension 6
twist 4 gluon operators to one loop order in the pure
gauge theory.

» Then, we found scale invariant operators by
multiplication appropriate powers of coupling constant.
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Field representations of gluon operators

Similar to the QED case, field strength tensor for QCD can
be represented color E and B fields,

0 E* E* E¢
o _ |Es 0 B ~ B¢
w= g2 —pr 0 B
o B¢ —B* 0

Dimension 4 scalar and twist2 operators -> E? and B?

a v 2 2
EX) G2,G%, =2(B* - E?)

2. 5 5
GE — _E{EH T BH).‘

Dimension 6 -> ‘BBB' and '‘BEE’ in the pure gauge theory
EX) fﬂbCGE _ fﬂbt:[;fﬂ# Cb":t‘j('w_ 30
Tr{fﬂbcfjﬁi} _ fﬂbCGSG . fﬂbCGi_ _ _Bﬂ _ {Bb ¢ BC) e BBH 1 (Eb 5 EC}



Temperature dependence

From Lattice QCD, we know the temperature dependence of
dimension 4 gluon operators. That is, E and B2.

E? has a rapid phase transition near Tc.

0.004 ool / _
0.002 /"
0

-0.002

E and B Condensates [Ge‘u’q]

-0.004,3 0.9 1 1.1 1.2

T/T,

Unfortunately, we don't know the exact temperature dependence of
dimension 6 gluon operators in the SU(3).



Temperature dependence

Instead of Lattice QCD, we assumed that fields are isotropic and the
angular correlations can be neglected. Then, we estimate the temperature

dependences of BEE and BBB from the E? and B# as follows,

EBE 1.I"IIE ﬁEE
(3> BEE)r — (a3/?BEE) = >Tm{ ~E%)T
{%BE>U {%Ezh
as g2y, 3/2
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Application to SumRule for J/WY mass

We adopted our temperature dependence of dim 6 gluon
operators to SumRule for J/W( = cc ).
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Summary

» We have introduced temperature dependence of the
dimension 6 gluon operators based on the temperature
dependence of the dim 4 electric and magnetic condensates
extracted from lattice QCD.

» Then, we improved the previous QCD sum rules for the J/W
mass near Tc based on dimension 4 operators, by including
the temperature dependent dimension 6 operators.

> We find that the addition of dim 6 condensates extends the

stability in the sum rule up to slightly higher temperature of
1.05Tc.
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