Search for $B^0 \rightarrow \ell \tau$ using hadronic tagging

@ ジャ BELLE EXPERIMENT

Youngmin Yook (Yonsei Univ.)

Youngmin.Yook@yonsei.ac.kr

The 12th Saga-Yonsei Workshop on Dec. 22nd, 2015

Outline

- Motivation and the Previous Searches
- **Studied Modes and Event Reconstruction**
- Variables used in this Analysis
- **Summary and Future Plans**

2

Motivation and the Previous Searches

Motivation for the Search

- $B \to \ell \tau \ (\ell \neq \tau)$
 - Search for Lepton Flavor Violation (LFV)
 - 'Nearly' forbidden in the Standard Model (SM)
 - Only allowed via *v*-oscillations
 - A SUSY seesaw [PLB 549, 159-169 (2002)] predicts enhanced B.F @ O(10⁻¹⁰)... yet why not?
 - Could leave a useful reference for our upcoming Belle-2!
 - The first study on this topic at Belle
 - Analysis somewhat similar to my previous analysis of $B \rightarrow \ell \nu$

Previous Result from Babar[PRD 77, 091104 (2008)]

- 342 fb^{-1} (371M) $B\overline{B}$ pairs / half of Belle data
- Uses hadronic tagging
- In short
 - Continuum suppression using :
 - R_2 / angle btw. Thrust axes of B_{tag} & other-side particles.
 - Uses missing momentum info & E_{ECL} for further BG reduction.
 - 1-D unbinned ML fits in the primary lepton's (*ℓ*'s) momentum.
- No signal observed $(n_{SIG} \sim 0)$ within $p_{\ell}^{Bsignal}$ signal region.

	n_{BKG} (~6% total err.)	ϵ_{SIGNAL} (~13% total err.)	U.L(BF)@90% C.L.
ετ	$9.35 \pm 0.35(stat)$	0.032%	$< 2.8 \times 10^{-5}$
μτ	$13.03 \pm 0.31(stat)$	0.027%	$< 2.2 \times 10^{-5}$

Previous Result from Babar[PRD 77, 091104 (2008)]

- 342 fb^{-1} (371M) $B\overline{B}$ pairs / half of Belle data
- Uses hadronic tagging
- In short
 - Continuum suppression using : R_2 / angle btw. Thrust axes of B_{tag} & other-side particles.
 - Uses missing momentum info & E_{FCL} for further BG reduction.
 - 1-D unbinned ML fits in the primary lepton's (ℓ 's) momentum.
- No signal observed $(n_{SIG} \sim 0)$ within $p_{g}^{Bsignal}$ signal region.

		n _{BKG} (~6% total err.)	ϵ_{SIGNAL} (~13% total err.)	U.L(BF)@9% C.L.
	ετ	$9.35 \pm 0.35(stat)$	0.032%	$< 2.8 \times 10^{-5}$
	μτ	$13.03 \pm 0.31(stat)$	0.027%	42.2×10^{5}
-		B + B + R	$\begin{array}{c} 2\\ 2\\ 40\\ 0\end{array}$	
	Nith more of	lata, precise	e event select	tion, and
f i	itting meth mproved.	od the uppe 7 1.8 1.9 2 2122 (3 2.4 2.5 26 2.7 Lepton Momenum (GeV/c)	Linit shall 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2. Lepton momentum (C	be further

Studied Modes and Event Reconstruction

Modes under Investigation

B.F. ratio of τ decays

Covers up 81% of the total τ decays!

- 10M HUGE samples for each Signal MC modes generated
- 4 x data of $b \to c$ and $e^+e^- \to q\bar{q}(q = udsc)$ [continuum] MC
- Large $b \rightarrow s, d$ samples $/ b \rightarrow u\ell v$ samples
- Depending on the ρ^+ mode, could add some more resonances: e.g. $\pi^+\pi^+\pi^-$ or $\pi^+\pi^0\pi^0$ which BaBar used...
 - Or might not use even ρ

Event Reconstruction (1/3)

- B_{tag} side (I guess you know this very well by now!)
 - One of *B*s is tagged by something EKP fullrecon.
 - Per event, the best NeuroBayes output (*o*_{tag}) candidate is chosen.
 - $-0.08 < \Delta E_{Btag} (= E_{Btag} E_{beam}) < 0.06$ applied.
 - That variable already used in the NeuroBayes.

Event Reconstruction (2/3)

- B_{sig} side
 - 2 GOOD charged tracks required
 - Expected to originate near IP. Should have opposite charge
 - Distance from the impact: dr < 0.05cm / |dz| < 1.5cm
 - At least one LEPTON (*e* > 0.9 || μ > 0.9).
 - No K^+ or P^+ ($\pi/K > 0.6 \& \pi/P > 0.6$).

Event Reconstruction (2/3)

• B_{sig} side

- 2 GOOD charged tracks required
 - Expected to originate near IP. Should have opposite charge
 - Distance from the impact: dr < 0.05cm / |dz| < 1.5cm
 - At least one LEPTON (*e* > 0.9 || μ > 0.9).
 - No K^+ or P^+ ($\pi/K > 0.6 \& \pi/P > 0.6$).

Event Reconstruction (3/3)

• B_{sig} side

- τ decay mode decision
 - Both are leptons: higher p^{Bsig} (mmt. @ signal B rest frame) becomes ℓ .
 - P_{Bsig} refers to B_{tag} only for its direction w/ mass constrained.
 - Only one lepton: $\tau \rightarrow \pi \nu$ or $\tau \rightarrow \rho \nu$
 - $\Delta E_{\tau} \equiv E_{\pi(+\pi^0)}^{\tau} + p_{\pi(+\pi^0)}^{\tau} m_{\tau}$ minimizing combination selected.
 - τ -rest frame obtained similarly to the B_{sig} 's, but also considers P_{ℓ}

From

 τ – decay

 $100 {
m MeV}$

 $\overline{50}$ MeV

 $150 \mathrm{MeV}$

Clusters w/ their energy below the ECL energy threshold are out of the game.

Backward endcap

Event Reconstruction (3/3)

• B_{sig} side

- *τ* decay mode decision
 - Both are leptons: higher p^{Bsig} (mmt. @ signal B rest frame) becomes ℓ .
 - P_{Bsig} refers to B_{tag} only for its direction w/ mass constrained.
 - Only one lepton: $\tau \rightarrow \pi \nu$ or $\tau \rightarrow \rho \nu$
 - $\Delta E_{\tau} \equiv E_{\pi(+\pi^0)}^{\tau} + p_{\pi(+\pi^0)}^{\tau} m_{\tau}$ minimizing combination selected.
 - τ -rest frame obtained similarly to the B_{sig} 's, but also considers P_{ℓ}

[@ τ -rest frame]

$$V_{\tau} \leftarrow T \rightarrow \pi^{+} \text{ or } \rho^{+}$$

$$(\vec{p}, |\vec{p}|) \qquad (\vec{0}, m_{\tau}) \qquad (-\vec{p}, E_{\pi/\rho})$$

$$\text{Ideally}: m_{\tau} = E_{\pi/\rho} + |\vec{p}| = E_{\pi/\rho} + p_{\pi/\rho} \rightarrow \Delta E_{\tau} = 0$$

Variables used in this Analysis Not optimized yet

Korean Belle General Meeting

Variables used in this analysis (prepared)

B_{tag} variables

•
$$M_{bc} (= \sqrt{E_{beam}^2 - p_{Btag}^2}) > 5.27$$

- o_{tag} cuts needed for the continuum BG heavy SP: ρ modes
- Kinematic variables
 - $p_{\ell}^{B} / p_{SP}^{\tau}$: interested in 2.2 < p_{ℓ}^{B} < 2.5 (*GeV*/*c*)
 - M_{miss}^2 (ideal) $\equiv \left[P_{Bsig} P_{\ell} P_{SP}\right]^2$
 - $M_{\ell\ell}$ for J/ψ and ψ' vetoes when $PL = SP = \ell$
 - E_{ECL} : sum of *E* not associated with B_{tag} nor PL nor SP
- Continuum suppression
 - $L_{KSFW}: LR(KSFW, \cos\theta_B)$
 - likelihood ratio based on shape variables of modified Fox-Wolfram Moments and the angle between the beam direction and the *B_{tag}*.
- SP:ρ mode exclusively
 - $M_{\rho} \equiv M_{\pi^+\pi^0}$
 - $\cos\theta_{\rho\tau}^{Bsig} \equiv (2E_{\tau}E_{\rho} m_{\tau}^2 m_{\rho}^2)/(2p_{\tau}p_{\rho})$

Challenges?

- Not much in the purely leptonic final state channels
- $\tau^+ \rightarrow \pi^+ \nu$
 - Higher continuum BG level
 - The $b \to u\ell\nu$ BG mostly from $B^0 \to \pi^-\ell^+\nu \& B^0 \to \rho^-\ell^+\nu$
 - Same (similar) final states! $\pi(+\pi^0)\ell + invisible$
- $\tau^+ \rightarrow \rho^+ \nu$
 - (on top of above...)
 - + misconstruction in the $\tau^+ \rightarrow \pi^+ \nu$ mode (missing π^0)
- Following plots are scaled to luminosity with B_{tag} correction from a $B \rightarrow D^{(*)} \ell \nu$ control sample study.

Variables used in this Analysis An easy case: leptonic

B_{tag} variables

charged $b \rightarrow c$

• Continuum suppression $\rightarrow L_{KSFW}$: $LR(KSFW, \cos\theta_B)$

•
$$M_{miss}^2$$
(ideal) $\equiv \left[P_{Bsig} - P_\ell - P_{SP}\right]^2$

• p_{ℓ}^B

• E_{ECL} : sum of *E* not associated with B_{tag} nor PL nor SP

The rest of variables


```
Cuts applied so far
        M_{bc} > 5.27
       L_{KSFW} > 0.9
         M_{miss}^{2} < 2
    2.3 < p_{\ell}^B < 2.4
         E_{ECL} < 0.8
```

3.5

- U.L. <u>expectation</u> by counting method
 - Assumptions:
 - 50% uncertainty on N_{background}
 - 10% uncertainty on ϵ_{sig}
 - ~ expected N_{bkg} observed
 - Comments:
 - μe mode only!
 - ~3% continuum BG expected from MC

Cuts applied so far $M_{bc} > 5.27$ $L_{KSFW} > 0.9$ $M_{miss}^2 < 2$ $2.3 < p_{\ell}^B < 2.4$ $E_{ECL} < 0.8$

€ _{SIG}	N _{bkg}	$B(B ightarrow \mu au)$
0.011%	4.2	$< 2.6 \times 10^{-5} (90\% C.L.)$

 $< 2.2 \times 10^{-5}$ (BaBar's using 6 τ decays)

I guess I have some hope!

Variables used in this Analysis Normal level: $\tau \rightarrow \pi v$

Cuts $M_{bc} > 5.27$ $L_{KSFW} > 0.9$ $E_{ECL} < 0.8$

Signal MC

Neutral $b \rightarrow u \ell v$

$\begin{array}{l} M_{bc} > 5.27 \\ L_{KSFW} > 0.9 \\ E_{ECL} < 0.8 \\ 0.85 < p_{SP}^{\tau} < 0.92 \end{array}$

Cuts

征HEP

Neutral $b \rightarrow u \ell v$

$$\begin{split} M_{bc} &> 5.27 \\ L_{KSFW} &> 0.9 \\ E_{ECL} &< 0.8 \\ \textbf{2.31} &< p_{\ell}^B < \textbf{2.37} \end{split}$$

Cuts

Neutral $b \rightarrow u \ell v$

Variables used in this Analysis Hard level: $\tau \rightarrow \rho v$

Korean Belle General Meeting

Cuts $M_{bc} > 5.27$ $L_{KSFW} > 0.9$ $E_{ECL} < 0.8$

What this signal MC plot says is...

Currently working on to reduce these mis-reconstructed and combinatorial BGs.

Dec. 22nd, 2015 31

What this plot says is...

$$Cuts$$

$$M_{bc} > 5.27$$

$$L_{KSFW} > 0.9$$

$$E_{ECL} < 0.8$$

Requiring more than 0 mdst_pi0 formed of good clusters Reconstructed in $\mu\tau(\pi\nu)$ combinatorial 443(-93%):5016:9597

 $-0.2 < \min(\Delta E_{\tau}) < 0.1$ 310:2934(-42%):9122

Currently working on to reduce these mis-reconstructed and combinatorial BGs.

More than 1 π^0 -0.2 < min(ΔE_{τ}) < 0.1

310:2934:9122 Reconstructed in μτ(πν) combinatorial $M_{bc} > 5.27$ $L_{KSFW} > 0.9$ $E_{ECL} < 0.8$

Cuts

3000 $X^{2}(\pi^{0}) < 10$ 310:576(-80%):7406(-19%) 2500 2000 1500 350 300 1000 250 200 500 150 100 0 20 30 50 50

Currently working on to reduce these mis-reconstructed and combinatorial BGs.

Korean Belle General Meeting

06 08 1 12 14

More than $1 \pi^{0}$ $-0.2 < \min(\Delta E_{\tau}) < 0.1$ **310(-95%):576(-91%):7406(-26%)** Reconstructed in $\mu \tau(\pi \nu)$ combinatorial

More handles in hand...

Currently working on to reduce these mis-reconstructed and combinatorial BGs.

Cuts

 $M_{bc} > 5.27$

 $L_{KSFW} > 0.9$

 $E_{ECL} < 0.8$

Summary and Plans

- Reconstruction of events and variables for l-tau hadronic tagging study is prepared.
- A very naïve cut and count method on one of the mode makes the future look promising.
- While the *uℓν* BG look dangerous for τ → πν sub-decay modes, it is planned to get over it by using the resonance difference in *p*^τ_{SP}.
- Reducing mis-reconstructed signal MC in the $\tau \rightarrow \rho \nu$ channel is going on.
 - Combination of the conditions mentioned in the last section on the ρ meson selection will bring improvements.
- Optimization expected to be carried out on *E*_{*ECL*} variable
 - The momentums and the M_{miss}^2 will be fitted on random toy samples and the mean of the resulting U.L.(90%) on B.F. will be the estimator.

