The 12th Saga-Yonsei Workshop on High Energy Physics

$B^+ \rightarrow I^+ X^0$ and B2BII

Chanseok Park

Yonsei University

ChanSeok.Park@yonsei.ac.kr

Part I

Search for massive invisible particle X⁰ in B+→I+X⁰ decays

Belle experiment

Motivation

Hadronic tagging method

Event selection

Upper limit of branching fractions

Summary

Belle experiment

Data collected with Belle detector at KEKB asymmetric e^+e^- collider : 3.5 GeV x 8 GeV Total of 711 fb⁻¹ of data collected at Y(4S)

→ 772M BB pairs

Motivation

Which is candidate?

Sterile neutrino in Large Extra Dimensions

K. Agashe, N.G. Deshpande, and G.-H. Wu, Phys. Lett. B 489, 367 (2000)

Heavy neutrino

T. Asaka and M. Shaposhnikokv, Phys. B 620, 17 (2005); D. Gorbunov and M. Shaposhnikov, J. High Energy Phys. 10 (2007) 015

Lightest neutralino in the SUSY with R-parity violation

A. Dedes and H. Dreiner, Phys. Rev. D 65, 015001 (2001)

Motivation

 λ ` : R-parity violating coupling constant p_I^B : momentum of lepton at B rest frame M_f~ : s-fermion mass

Any sensitivity of signal \rightarrow New Physics!

Hadronic tagging method

Good suppression of $e^+e^- \rightarrow q\bar{q}$ (q = u,d,s,c) Knowledge of charge, flavor, four-momentum of B_{tag} and B_{sig} !

NIM A654, 432 (2011)

>96% of Y(4S) \rightarrow BB with nothing else produced

one B-meson is completely reconstructed from known b \rightarrow c decays without v efficiency is low, but purity is high

Good ways to reconstruct modes with invisible particle

Event selection

Track quality		Continuum	suppressio	n	
Dz < 2 cm		$ \cos\theta_{thrust} < 0.9 \text{ for } B^+ \rightarrow e^+ X^0$			
Dr < 0.5 cm		$ \cos\theta_{thrust} < 0.8$ for $B^+ \rightarrow \mu^+ X^0$			µ+ X ⁰
		ECL			
d-B meson					
ΔE < 0.05 GeV		E _{ECL} S	deband		
$M_{bc} > 5.27 \text{ GeV/c}^2$		Б рі ^в	Blinded		
	0	sideband	Region	2.0	
	Track quality Dz < 2 cm Dr < 0.5 cm d-B meson	Track quality Dz < 2 cm Dr < 0.5 cm d-B meson 0.9 0.9 0.9 0.9 0.9	Track qualityContinuum $ Dz < 2 \text{ cm}$ $ \cos\theta_{thrust} <$ Dr < 0.5 cm	Track quality $ Dz < 2 \text{ cm}$ $Dr < 0.5 \text{ cm}$ Continuum suppression $ \cos\theta_{thrust} < 0.9 \text{ for B}^+$ $ \cos\theta_{thrust} < 0.8 \text{ for B}^+$ d-B meson c^2 E_{ECL} E_{ECL} d-B meson 0.5 0.5 p_1^B sideband $Blinded$ Region	Track qualityContinuum suppression $ Dz < 2 \text{ cm}$ $ \cos\theta_{thrust} < 0.9 \text{ for } B^+ \rightarrow 0$ $Dr < 0.5 \text{ cm}$ $ \cos\theta_{thrust} < 0.8 \text{ for } B^+ \rightarrow 0$ d-B meson E_{ECL} d-B meson 0.5 c^2 p_1^B Blinded 0.5 p_1^B 0.18 0.5 0 1.8 2.3 3.0

E_{ECL} : Remaining energy of ECL calorimeter (tagged-B & signal lepton)

p_I^B : signal lepton's momentum in the signal B rest frame

Upper limit of B.F.

$$\mathcal{B}(B^+ \to l^+ X^0) = \frac{N_{\rm obs} - N_{\rm exp}^{\rm bkg}}{2 \cdot \epsilon_s \cdot N_{B^+ B^-}}$$

 $\boldsymbol{\epsilon}_s$: efficiency of signal

 N_{B+B-} : Number of charged B meson pairs N_{obs} : # of observed event in the signal criteria N_{exp}^{bkg} : Expected background

- using 1-D unbinned MaxLikelihood p_I^B fitting
- scaled with Data / MC ratio in sideband region

Upper limit of B.F.

Saga-Yonsei Workshop

Upper limit of B.F.

$$\xi_i = {\lambda'}_{i13}^2 \left(\frac{1}{2M_{\tilde{l}_i}^2} + \frac{1}{12M_{\tilde{u}_L}^2} + \frac{1}{6M_{\tilde{b}_R}^2} \right)^2 = \frac{8\pi (m_u + m_b)^2 \mathcal{B}(B^+ \to l_i^+ X^0)}{\tau_{B^+} g'^2 f_B^2 m_{B^+}^2 p_{l_i}^B \left(m_{B^+}^2 - m_{l_i}^2 - m_{X^0}^2 \right)}$$

From the branching fraction upper limits

We can set bounds on the SUSY-related parameter ξ_{i}

Most stringent upper bound on $\boldsymbol{\xi}_i$

 $\xi_1 < 4.12 \times 10^{-14}$

$\xi_2 < 4.22 \times 10^{-14}$

Summary

* We search for $B^+ \rightarrow I^+ X^0$, where X^0 can be any invisible (and possibly massive) spin-1/2 particle.

* We successfully suppressed background by help of hadronic tagging method.

- * In preliminary results, the upper limits are $O(10^{-6})$
- * Assuming RPV SUSY, we can set bounds on SUSY-related parameters
- * This search comes into draft step, please ready for publication.

Part II

B2BII project Belle MDST → Belle II MDST Conversion

Chanseok Park, Seokhee Park and Gyutae Kim (Yonsei Univ.)

ChanSeok.Park@yonsei.ac.kr

Contents

Goal of B2BII

Conversion

- Tracking
- PID
- module

Validation

- Monitoring

Summary

MDST : Mini-data-structure-table

BASF : Belle Analysis Framework

In Belle II, BASF2 is used.

Belle & Belle II mdst data structures are different.

Goal of B2BII

read and analyze Belle MDST data within BASF2

Conversion

- → read Belle MDST file (Panther tables)
- → specify which Panther tables have to be converted to perform physics analyses
- → Create conversion rules and implement them

Validation

- → write BASF and BASF2 modules that write out contents of specific MDST tables/datobjects to flat ntuple and compare them. They should match perfectly.
- → Give conversion monitoring histograms

Belle -> Belle II converter

Tracking

Both Mdst_trk_fit and TrackFitResult internally store Helix parameters, however the Helix pa rameterization used by Belle and Belle II differ slightly

Belle Helix Parameterization	
d_rho	signed distance of the helix from the pivot in xy plane
phi_0	the azimuthal angle to specify the pivot wrt. helix center (range from 0 to 2pi)
kappa	1/pt (reciprocal of the transverse momentum) and the sign of kappa represents th e charge of the track
d_z	is the signed distance of the helix from the pivot in the z direction
tanLambda	slope of the track (tangent of the dip angle)

Belle II Helix Parameterization

d0	the signed distance to the perigee. The sign positive (negative) if the angle between the transverse momentum and d0 is $+pi/2$ (-pi/2)
phi	the angle between the transverse momentum and the x axis and in [-pi, pi]
omega	the signed curvature of the track where the sign is given by the charge of the particle
z0	the distance of the perigee from the origin in the r-z plane
cotTheta	the inverse slope of the track in the r-z plane

Tracking

 $\mathbf{a} = (d_
ho, \phi_0, \kappa, d_z, \tan\lambda)^T$ - five helix parameters

 $a = (d_0, \phi_0, \omega, z_0, \tan \lambda)^T$ - five helix parameters Pivot always origin!

$$\begin{cases} d_0 &= d_\rho \\ \phi_0 &= \phi_0 + \frac{\pi}{2} \\ \omega &= \frac{\kappa}{\alpha} \\ z_0 &= d_z \\ \tan \lambda &= \tan \lambda \end{cases}$$

$$\begin{aligned} \Sigma_{\text{BelleII}} &= J \Sigma_{\text{Belle}} J^T \qquad J_{i,j} = \frac{\delta f_i}{\delta a_{\text{Belle}}^j} \text{ Jacobian matrix} \end{cases}$$

PID

If PID is not available for a given sub-detector, or it does not pass standard quality cuts, like lihoods will not be set for this detector. (i.e. PIDLikelihood::isAvailable(det) should be equal t o quality cut)

atc_pid	PIDLikelihood	Notes
ACC	ARICH	quality cut: at least one likeilhood != 0, (bool)mdst_acc and mdst_acc.quality() == 0 (needs current belle_legacy version and uncommented #define HAVE_KID_ACC)
TOF	ТОР	quality cut: at least one likelihood != 0, (bool)mdst_tof and mdst_tof.quality() == 0
CDC	CDC	quality cut: at least one likelihood != 0, mdst_trk.dEdx() > 0

ECLECL information in principle available, but not used in default config of FixMdstKLMKLMquality cut: mdst_charged.muid_ID() != 0 and mdst_klm_mu_ex.Chi_2() > 0

atc_pid

PID

atc_pid

<pre>double atcPIDBelle(const Particle* particle, const std::vector<double>& sigAndBkgHyp) { int sigHyp = int(std::lround(sigAndBkgHyp[0])); int bkgHyp = int(std::lround(sigAndBkgHyp[1])); const PIDLikelihood* pid = particle->getRelatedTo<pidlikelihood>(); if (!pid) return 0.5; // ACC = ARICH Const::PIDDetectorSet set = Const::ARICH; double acc_sig = exp(pid->getLogL(hypothesisConversion(sigHyp), set)); double acc_bkg = exp(pid->getLogL(hypothesisConversion(bkgHyp), set)); double acc_sig + acc_bkg > 0.0) acc = acc_sig / (acc_sig + acc_bkg); // TOF = TOP set = Const::TOP; double tof_sig = exp(pid->getLogL(hypothesisConversion(sigHyp), set)); double tof_all = tof_sig + tof_bkg; if (tof_all != tof_sig + tof_bkg; if (tof_all != tof_sig / tof_all;</pidlikelihood></double></pre>	<pre>// dE/dx = CDC set = Const::CDC; double cdc_sig = exp(pid->getLogL(hypothesisConversion(sigHyp), set)); double cdc_bkg = exp(pid->getLogL(hypothesisConversion(bkgHyp), set)); double cdc = 0.5; double cdc_all = cdc_sig + cdc_bkg; if (cdc_all != 0) { cdc = cdc_sig / cdc_all; if (cdc < 0.001) cdc = 0.001; if (cdc > 0.999) cdc = 0.999; } // Combined double pid_sig = acc * tof * cdc; double pid_bkg = (1 acc) * (1 tof) * (1 cdc); return pid_sig / (pid_sig + pid_bkg); } muid </pre>
<pre>eid double particleElectronECLId(const Particle* part) { const PIDLikelihood* pid = part->getRelatedTo<pidlikelihood>(); if (!pid) return 0.5; Const::PIDDetectorSet set = Const::ECL; return pid->getProbability(Const::electron, Const::pion, set); }</pidlikelihood></pre>	<pre>double muIDBelle(const Particle* particle) { const PIDLikelihood* pid = particle->getRelatedTo<pidlikelihood>(); if (!pid) return 0.5; if (pid->isAvailable(Const::KLM)) return exp(pid->getLogL(Const::muon, Const::KLM)); else return 0; } double muIDBelleQuality(const Particle* particle) { const PIDLikelihood* pid = particle->getRelatedTo<pidlikelihood>(); if (!pid) return 0; }</pidlikelihood></pidlikelihood></pre>
2015-12-22 Saga-Yor	<pre>return pid->isAvailable(Const::KLM); }</pre>

Module

B2BIIMdstInput : Module to read Belle MDST files B2BIIFixMdst : Used to fix the old Belle I MDST files before processing. B2BIIConverdMdst : Converts Belle mDST objects (Panther tables and records) to Belle II MDST objects

Wrapper function 'convertBelleMdstToBelleIIMdst'

Validation

Validation

Monitoring

Summary

* B2BII aims to convert the mdst file produced in BASF to BASF2 platform, so people can analyze the Belle data under BASF2.

- * Conversion and validation procedures are well-done.
- * B2BII group prepare 'Monitoring histogram' system for users.
- * Next plan of B2BII group is to analyze some decay channel with B2BII.

Thank you for listening!

BACKUP

Belle experiment

Data collected with Belle detector at KEKB asymmetric e^+e^- collider : 3.5 GeV x 8 GeV Total of 711 fb⁻¹ of data collected at Y(4S)

→ 772M BB pairs

Integrated luminosity of B factories

Used sample

Signal MC

mode	Mass of X		Amount			
$B^+ \rightarrow e^+ X$	0.1, 0.2, 1.8 GeV		2,000,000 events for	2,000,000 events for each mass of X		
$B^{\scriptscriptstyle +} \mathrel{} \mu^{\scriptscriptstyle +} X$	0.1, 0.2, 1.8 GeV		2,000,000 events for	2,000,000 events for each mass of X		
We have 18 kinds of X for different mass						
		Mode	Process	Amount		
Backgroun	round 1C	Generic MC	BB, qq	5 streams		
N/C		RareB	b → s, d	50 streams		
		Ulnu	$B \rightarrow X_u l v$	20 streams		
	Separately generated!	ενγ	Β+ → ενγ	1000 streams		
-		μνγ	B⁺ → μνγ	1000 streams		
Separat		$\pi^+ K^0$	$B^+ \rightarrow \pi^+ K^0$	500 streams		
genera		$\pi^0 e \nu$	$B^+ \rightarrow \pi^0 e \nu$	300 streams		
		$\pi^0\mu\nu$	$B^+ \rightarrow \pi^0 \mu \nu$	300 streams		

Used skim

SKIM PATH

Hadronic Tagging \rightarrow LX_SKIM \rightarrow ANALYSIS_CODE

LX_SKIM

✤ 1 charged particle not used in Full_recon \rightarrow call it 'c'

- ↔ (Charge of c) x (Charge of tagged B) = -1
- ✤ Momentum of c(LAB frame) >1.0 GeV

Optimization

$$M \text{ ean of U.L.} = \frac{\sum_{n=0}^{6} Yield_{U.L.}(BG_{est}; n) \cdot Poisson(BG_{est}; n; 1000)}{\sum_{n=0}^{6} Poisson(BG_{est}; n; 1000) \cdot N(B\overline{B}) \cdot \varepsilon_{sig}}$$

- n : # of observed events in signal region.
- Yield_{U.L.} : U.L. of Yields using POLE program
- Poisson : # of values of 1,000 events have Poisson dist

Optimization

Mean of upper limit of branching fraction based on MC for each p₁^B criteria

 $B^+ \rightarrow e^+ X$ M(X) : 1.8 GeV/c²

