

Study of $B^+ \rightarrow \pi^+ \pi^0 \pi^0$ at Belle

12TH SAGA-YONSEI WORKSHOP

2015.12.22

KYUNGHO KIM

kyungho.kim85@yonsei.ac.kr

Contents

Introduction

Belle Detector

My Research Processes

- Research Strategy
- B Meson Quality Control Method
- Best B Candidate Selection
- \circ 2D Fitting of M_{bc} vs. Δ E Distribution

Summary

Introduction

In the Standard Model (SM), $b \rightarrow c$ and $b \rightarrow u$ transitions are allowed via electroweak interaction.

 Due to the CKM suppression, b→u transitions are comparably less observed than b→c transitions.

The purpose of my research process is to search for the yet unobserved $B^+ \rightarrow \pi^+ \pi^0 \pi^0$ decay

- Its experimental limit on the branching fraction at 90% confidence level(C.L.) obtained by the ARGUS experiment is Γ(B⁺→π⁺π⁰π⁰)/Γ_{total} < 8.9 × 10⁻⁴
 - It is based on a data sample of 214 pb⁻¹ from Y(4S) resonance and 93 pb⁻¹ in the continuum, on the ARGUS detector at the DORIS II storage ring.

We plan to search with a much larger amount of B mesons, corresponding to 772M Υ (4S) processes, at the Belle experiment.

Invariant mass distribution of all B candidate with 2 or 3 pions in final states a) At the Y(4S)

b) After subtraction of the continuum contribution

Reference : ARGUS Collaboration, Search for hadronic $b \rightarrow u$ decays, Phys.Lett. B241 (1990) 278-282

Belle Detector

The data sample used in this analysis was collected with the Belle detector at the KEKB asymmetric-energy e⁺e⁻ collider.

- $^\circ\,$ Integrated luminosity of 711 fb^{-1} or 772 $\times 10^6\,B\overline{B}$ pairs
- Collected on the Υ (4S) resonance at a center-of-mass (CM) energy (\sqrt{s}) of 10.58 GeV.

The structures of Belle detector

- Silicon vertex detector (SVD)
- 50-layer central drift chamber (CDC)
- Aerogel threshold Cherenkov counters (ACC)
- Array of a barrel-like arrangement of time-of-flight scintillation counters (TOF)
- Electromagnetic calorimeter comprised of 8736 CsI(Tl) crystals (ECL)
- Superconducting solenoid coil that provides a 1.5T
- $^{\circ}~$ Iron flux return located outside of the coil to detect $K_{L}{}^{0}$ mesons and to identify muons (KLM)

Research Strategy

Perform a blind analysis with Monte Carlo (MC) samples based on

- EVTGEN event generator
- GEANT3 detector simulation

At the current process, we study the nature of nonresonant 3 body decay of $B^+ \rightarrow \pi^+ \pi^0 \pi^0$

- Using a large MC sample with 1M events generated in total
- In MC sample, reconstruct B meson by using 1 charged pion and 2 neutral pions.
 - Charged pion is selected from detected charged particle.
 - Neutral pions are reconstructed from detected gammas.
 - Another detected particles are regarded as them from other side B.
- By using MC sample, just try to calculate how much the branching fraction is.

B Meson Quality Control

After reconstruction of B meson using one charged pion and two neutral pions, we estimate a quality of the reconstructed B meson according to the following variables

- $^\circ\,$ The beam constrained mass (M $_{\rm bc})$
- $\circ~$ The energy difference to the half of the beam energy in the center of mass (CM) frame (ΔE)

$$M_{bc} = \sqrt{E_{CM}^2 - p_B^2}$$
$$\Delta E = E_B - E_{CM}$$

 E_{CM} : Beam energy in CM frame p_B^2 : The momentum of reconstructed B in CM frame E_B : The energy of reconstructed B in CM frame

To limit our study near the region relevant to the signal, we apply cuts in M_{bc} and ΔE :

 $5.2 \text{GeV/c}^2 < M_{bc} < 5.29 \text{GeV/c}^2$ $|\Delta E| < 0.6 \text{GeV}$

B Meson Quality Control

The 2-D plot of the signal MC sample M_{bc} - ΔE distribution and its projection in each variable

• $5.2 \text{GeV/c}^2 < M_{bc} < 5.29 \text{GeV/c}^2$, $|\Delta E| < 0.6 \text{GeV}$

Best B candidate Selection

- To only take account of the B mesons reconstructed from good tracks, we apply the following cut :
 - Lab-frame transverse momentum (P_T) > 0.1 GeV/c
 - The distances from the interaction point to the B decay vertex in the plane
 - Perpendicular to the beam direction (dr) < 0.1cm
 - Along the beam direction (dz) < 2cm
 - Not identified as an electron/positron in particle identification : electron id < 0.95
 - If multiple selection is remained after applying these cuts, I choose $\min\left(\sqrt{(10 \cdot dr)^2 + (dz)^2}\right)$ as the best pi+
- In cases where there are multiple candidates reconstructed in an event, we decide which is the best by the quality of the pi0's used in the reconstruction:
 - $\,\circ\,\,$ Minimum value of sum of χ^2 in mass constraint fit of π^0

2D Fitting of M_{bc} vs. ΔE Distribution

To utilize in the future in order to obtain the signal yield, an unbinned 2 dimensional ML fit in the M_{bc} vs. ΔE plane is performed.

Tighter cut applied for suppressing the effect of the combinatorial background events

- $^\circ~5.26 GeV/c^2 < M_{bc} < 5.29 GeV/c^2$, -0.3 GeV < $\Delta E < 0.1 GeV$
- Correlation factor between M_{bc} and ΔE : 0.17929. → It is not easy to obtain 2D PDF by taking direct product of the M_{bc} and ΔE PDFs.

2D Fitting of M_{bc} vs. ΔE Distribution

To utilize in the future in order to obtain the signal yield, an unbinned 2 dimensional ML fit in the M_{bc} vs. ΔE plane is performed.

Tighter cut applied for suppressing the effect of the combinatorial background events

- $^\circ~5.26 GeV/c^2 < M_{bc} < 5.29 GeV/c^2$, -0.3 GeV < $\Delta E < 0.1 GeV$
- Correlation factor between M_{bc} and ΔE : 0.17929. → It is not easy to obtain 2D PDF by taking direct product of the M_{bc} and ΔE PDFs.
- In order to model such correlated distribution, I plan to perform a fit in the shown cut ΔE region and obtain the parameters of the 1D PDF used to model M_{bc} as a function of ΔE.

Summary

- In the Standard Model (SM), b→c and b→u transitions are allowed via electroweak interaction. But b→u transitions are comparably less observed than b→c transitions.
- A preliminary study with a non-resonant 3-body decay signal MC was presented.
- The B mesons', reconstructed from the sets of a charged pion and a neutral pion, quality can be controlled via variables related to the B mesons' daughters, where the best B selection was done according to the χ^2 of the mass constrained fit used in reconstructing the neutral pions.
- $^{\circ}$ Currently, working a parametric PDF modelling of the signal MC in the 2D plane of M_{bc} and Δ E.

Thank you for listening.

KYUNGHO KIM

Backup

M_{bc} Fitting on Each ΔE Region

Fitting with PDF of Mbc fitting Crystal Ball function + (60.0018) 000 ²/₂₈₀₀ -0.3 < ΔE < -0.2 **ARGUS** background র্ব600 000 Fents / (function § 400 1200 • At low ΔE region, PDF 1000 3000 does not fit with signal 800 MC. 2000 600 400 1000 200 5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.21 Mbc fitting **Crystal Ball function** 22000 29000 -0.1 < ∆E < 0 00 $f(x; \alpha, n, \overline{x}, a)$ 12000 000 198000 $= N \cdot \begin{cases} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right) & \left(\text{for } \frac{x-\bar{x}}{\sigma} > -\alpha\right) \\ A \cdot \left(B - \frac{x-\bar{x}}{\sigma}\right)^{-n} & \left(\text{for } \frac{x-\bar{x}}{\sigma} \le -\alpha\right) \end{cases}$ 18000 14000 8000 12000 10000 6000 where 8000 4000 $A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right)$ 6000 4000

2000

5.2

5.21

5.22

12/23/2015

 $B = \frac{n}{|\alpha|} - |\alpha|$

KYUNGHO KIM

5.26

5.27

5.28

5.29

5.25

5.23

5.24

Dalitz Plot Study

Dalitz plot study

- The kinematics of a three-body decay can be described by the masses of two combined particles in the process
- Dalitz plot is a 2 dimensional plot with a selection of the two possible pairs of such mass combination.
- We expect the Dalitz plot to be uniformly flat without angular correlations between the decay products(as our signal MC events are generated)
- When the resonant processes, e.g. $B^+ \rightarrow \rho^+(\pi^+\pi^0)\pi^0$, provide significant contribution, the Dalitz plot will show a non-uniform distribution with a peak around the mass of the resonance.

Dalitz Plot Study

Labeling particles after reconstructing a B meson

- $^\circ~$ The charged pion of our decay as particle 1
- $^\circ\,$ The neutral pion yielding a larger mass when combined with the charged pion as particle 2
 - Then, we can determine the larger of the combined mass and present a Dalitz plot folded.
- The lastly left neutral pion as particle 3

All the possible B candidate combination with the B quality cuts applied in our signal sample are included in the figure at right.

We observe 2 peculiar peaks as circled in the figure at right.

- $^\circ~$ The peak near to the origin originates from the low momentum π^+
- $^\circ~$ The other around the 20 < M_{12} < 25 GeV²/c4 originates from the low momentum π^0

