$B \rightarrow X_s \gamma \text{ study}$ with hadronic tagging method in *Belle* collaboration

Hanjin Kim hanjin.kim@yonsei.ac.kr Yonsei Univ.

INTRODUCTION

Figure 1: FCNC process of $b \to s\gamma$ decay

As for the tree level decay of $b \rightarrow s\gamma$ is forbidden in the Standard Model, the decay takes place at least at the loop level with FCNC as a leading order penguin diagram as Figure 1.

(The virtual W might be replaced by H[±] or non-SM particles, which leads to enhanced or suppressed branching fraction.)

The most recent NNLO result

 $\mathcal{B}(B \to X_s \gamma)_{NNLO} = (3.36 \pm 0.23) \times 10^{-4}$

The most recent HFAG average $\mathcal{B}(B \to X_s \gamma)_{\text{HFAG}} = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$

The current experimental average agrees well on the recent NNLO result with $\sim 0.3\sigma$ deviation.

INTRODUCTION

Through this analysis, we will be able to obtain ..

B.F, the CP asymmetry, A_{CP} and the **isospin asymmetry** Δ_{0-} of b \rightarrow s γ .

Current PDG $A_{CP} = -0.008 \pm 0.029$ $\Delta_{0-}(B(B \rightarrow X_s \gamma)) = -0.01 \pm 0.06$ Especially, provided the info. of the charge of B-meson by *the hadronic tagging method*, we can *directly* obtain the isospin asymmetry.

EKP fullrecon module fully reconstructs one of Bmesons (B_{tag}) in an event via hadronic decay channels (e.g. $B \rightarrow D\pi$) providing the info. on p, E, q, etc. from which we can derive the info. of the other B meson (B_{sig}) directly. (The crucial concept of the hadronic tagging method !)

 $\begin{array}{l} E_{CM}: (\ 2 \ x \ Beam \ energy \) \ in \ CM \ frame \\ p_{tag}: \ The \ momentum \ of \ B_{tag} \ in \ CM \ frame \\ E_{Btag}: \ The \ energy \ of \ B_{tag} \ in \ CM \ frame \end{array}$

Figure 3. A schematic view of the hadronic tagging method via $B \rightarrow D\pi$ channel

Introduction

Signal MC

Kagan-Neubert model shaped with heavy quark parameters employed for signal modeling.

 $B \rightarrow K^* \gamma$ channels are separately generated for more realistic modeling. Events as ~25 times as many N_{expected} in Data was generated

Selection Criteria

Signal Isolations

- 1. TDC off-timing veto
 - to suppress beam backgrounds
- 2. $\pi^0 \& \eta$ veto
 - based on P. Koppenburg's study
- 3. E9/E25 (photon purity)
- 4. electron radiation veto
 - Reject photons too close to electron track

Signal Candidate Selection

Most energetic (in B rest frame) gamma among sig-side gammas.

 $E^B_{\mathrm{candi.}\gamma} > 1.3 \mathrm{GeV}$

Best B Selection

After fullrecon Efficiency Simulated & pre-selection Signal 1.45E+07 2.11E+04 0.15% 3.86E+09 1.21E+07 0.31% Generic 1.16E+10 5.32E+06 0.05% Continuum

Table. The number of event before/after the fullrecon & pre-selection of sig/Generic/Continuum.

All MC available in KEKCC are employed

< Multipliers to corresponding # of events in DATA>

Continuum Suppression using NeuroBayes

• Test Input Variables - Event Shape Variables

 O_{tag} , $|cos\theta_{thrust}|$, Missing M², E_T, Super-Fox-Wolfram moments, Sphericity, Aplanarity, and $cos\theta_B$

• NB output distributions & performance

SqNB_{out} > 0.1 is required

90% of signal events are reserved while rejecting 70% of the continuum events

Selection Criteria

Selection Criteria

Each requirements were optimized to show the possible- highest significance in the target region, 1.8 < E_γ < 2.0 GeV Overall gaussian significance improved from 2.1 to 3.9 Many π⁰ & η originated bkg still remaining

Validation

Before proceed, we validate the fitting and bkg subtraction method using a set of pseudo data events (toy MC)

Our methodology will do fine within the statistical errors of DATA.

Background Summary

Samples	Percent in Εγ>1.8	1st order correction	Selection Criteria
Signal	16.9%	Not used in the measurement	
continuum	22.0%	Need to validate on using continuum MC	
π ⁰ →γγ	45.8%	Correction factors	Not studied yet
η→γγ	10.3%	Correction factors	Not studied yet
misID e	2.5%	Not corrected but 20% uncertainty on its yield will be assigned.	
misID had	0.3%	Small contribution, no correction but some conservative uncertainty on its yield will be assigned. (50% maybe?)	
Other decays	5.9%	Containing ω, J/Ψ, η', X _c lv γ in majority and so many decays with small contributions, most of them are generated with well-measured BFs. So we don't do any corrections but an appropriate uncertainty will be assigned considering the combination.	

π⁰/η Background Calibration

• To correct the absolute rate of $\pi^0 \& \eta$ background, the calibration factors are obtained using a large-sized set of M($\gamma\gamma$) control samples

Systematic Uncertainties

- Possible sources of systematic uncertainties
- Note most of them will be canceled out in asymmetry calculations
 - 1.General
 1.1.Binning effect
 1.2.N_{BB} uncertainty
 1.3.Tagging efficiency bias
- 2.Signal Efficiency
 2.1.HFAG BF uncertainty
 2.2.BF(b→dγ) uncertainty
 2.3.Heavy quark parameters' uncertainties
 2.4.Extrapolation factor uncertainty
 2.5.High E photon detection rate
 2.6.SVD Matrix

Summary and Plan

- An radiational Electro Weak Penguin decay, $b \rightarrow s\gamma$ is being studied in Belle collaboration using hadronic decay. Selection variables are determined and studied.
- Valdiation on fitting and background subtraction method is done.
- The composition of background events are studied.
- 1st-order correction factors for π^0/η are obtained using a large control sample.
- Sources of systematic errors are surveyed.
- Need a further study on the background systematic uncertainty although temporary values are assigned.
- Need to improve optimization for a better measurement, A_{CP} on the selection criterias, signal region selection, etc.