The 3-3-1 Models and Implication to Astroparticle Physics

Nguyen Thi Thuy
Yonsei University
(based on Phys. Rev. D 91, 055023 (2015), and arXiv:1501.04385 [hep-ph])

Wonju, June 4-7, 2015

Outline

(1) Motivation
(2) The 3-3-1 Models
(3) Investigation of Dark Matter in Minimal 3-3-1 Models
4. Inflation and Leptogenesis in the 3-3-1-1 Model
(5) Summary

1. Motivation

Inflation

Inflation was suggested to solve the flatness and hoziron problems. The fundamental idea of inflation is that the Universe undergoes a period of acceleration expansion, defined as a period when $\ddot{>}>0$, at early times. A plausible scenario for driving such an accelerated expansion is provided by scalar fields.

Matter-antimatter asymmetry

The baryon asymmetry of the Universe can be expressed as

$$
\left.Y_{\Delta B} \equiv \frac{n_{B}-n_{\bar{B}}}{s}\right|_{0}
$$

where $n_{B}, n_{\bar{B}}$ are the number densities of baryons and antibaryons, s is the entropy density, $s=g_{*}\left(2 \pi^{2} / 45\right) T^{3}$ with g_{*} is the number of degrees of freedom in the plasma, and T is the temperature.
From Big-Bang Nucleosynthesis (BBN) and Wilkinson Microwave Anisotropy Probe (WMAP),

$$
Y_{\Delta B}^{\mathrm{BBN}}=(8.10 \pm 0.85) \times 10^{-11}, \quad Y_{\Delta B}^{\mathrm{CMB}}=(8.79 \pm 0.44) \times 10^{-11}
$$

All cosmological models agree that the Universe started with the same amount of baryon and anti-baryon
\Rightarrow The baryon asymmetry must be generated dynamically.

Sakharov requires

\triangleright Baryon number violation
$\triangleright C$ and CP violation
\triangleright Out of equilibrium dynamics
The candidate scenario is Leptogenesis. Singlet and heavy Majorana neutrinos N_{i} are introduced to provide mass to the light neutrinos via a seesaw mechanism. These heavy neutrinos can decay into lighter particles and create a lepton number asymmetry, which can be converted into a baryon asymmetry,

$$
Y_{\Delta B}=\frac{C_{\mathrm{sph}}}{C_{\mathrm{sph}}-1} Y_{\Delta L}
$$

Dark matter

Evidence for dark matter

$$
\frac{v_{\mathrm{rot}}^{2}}{r}=\frac{G M(r)}{r^{2}} \Rightarrow v_{\mathrm{rot}}=\sqrt{\frac{G M(r)}{r}}
$$

where r is the distance of the tracer star from the galactic center and $M(r)$ is the galactic mass enclosed within this distance.

DM should be non-baryonic and cold, electrically neutral, stable (the life time $>$ the age of the Universe).

2. The $S U(3)_{C} \otimes S U(3)_{L} \otimes U(1)_{X}(3-3-1)$ Models

In general the fermion triplets in the 3-3-1 models are arranged as

$$
\begin{aligned}
& \psi_{a L}=\left(\nu_{a L}, e_{a L}, F_{a L}\right)^{T} \sim\left(1,3, X_{\psi_{a}}\right), \\
& Q_{\alpha L}=\left(d_{\alpha L},-u_{\alpha L}, J_{\alpha L}\right)^{T} \sim\left(3,3^{*}, X_{Q_{\alpha}}\right), \\
& Q_{3 L}=\left(u_{3 L}, d_{3 L}, J_{3 L}\right)^{T} \sim\left(3,3, X_{Q_{3}}\right),
\end{aligned}
$$

where the index $a=1,2,3$ and $\alpha=1,2$.
The electric charge operator is given by $Q=T_{3}+\beta T_{8}+X I$.
How to define X charges?
1-The electric charge is conserved requiring
$Q<\chi>=0, Q<\eta>=0, Q<\rho>=0$
2-The Yukawa Lagrangian needed to generate mass to all quarks is invariant under the $U(1)_{X}$
3-The anomaly condition $\operatorname{Tr}\left[S U(3)_{L}\right]^{2}\left[U(1)_{X}\right]=0$
4-The relations of $X_{\psi_{a}}$ and the electric charge of leptonic particles are obtained by applying the electric charge operator on the lepton triplet.

The minimal 3-3-1 model: $F_{a L}=\left(e^{c}\right)_{a L}$, with $\left(e^{c}\right)_{a L} \equiv\left(e_{a R}\right)^{c}$

$$
q_{e_{a}}=-q_{e_{a}^{c}} \Rightarrow X_{\psi_{a}}=\frac{1}{4}+\frac{\beta}{4 \sqrt{3}}
$$

All X charges of triplets and singlets can be expressed in a single parameter β. Using $q_{e_{a}}=-1$ then $\beta=-\sqrt{3}$. Therefore,

$$
\begin{gathered}
X_{\psi_{a}}=0, \quad X_{Q}=-\frac{1}{3}, \quad X_{Q_{3}}=\frac{2}{3} \\
q_{u_{a}}=\frac{2}{3}, \quad q_{d_{a}}=-\frac{1}{3}, \quad q_{J_{\alpha}}=-\frac{4}{3}, \quad q_{J_{3}}=\frac{5}{3} .
\end{gathered}
$$

The 3-3-1 model with neutral fermions: $F_{a L}=\left(N^{c}\right)_{a L}$, with $\left(N_{a R}\right)^{c} \equiv\left(N^{c}\right)_{a L}$
We get $\beta=-1 / \sqrt{3}$, and

$$
\begin{gathered}
X_{\psi_{a}}=-\frac{1}{3}, \quad X_{Q}=0, \quad X_{Q_{3}}=\frac{1}{3} \\
q_{u_{a}}=\frac{2}{3}, \quad q_{d_{a}}=-\frac{1}{3}, \quad q_{J_{\alpha}}=-\frac{1}{3}, \quad q_{J_{3}}=\frac{2}{3}
\end{gathered}
$$

3. Investigation of Dark Matter in Minimal 3-3-1 Models

\triangleright There is no dark matter candidate in the original 3-3-1 model. One might introduce a Z_{2} symmetry so that one scalar triplet of the theory is odd, while all other fields are even under the Z_{2} symmetry. The odd particles act as inert fields. Therefore, the lightest and neutral inert particle is stable and can be a dark matter candidate.
\triangleright The minimal 3-3-1 model originally works with three scalar triplets

$$
\rho=\left(\rho_{1}^{+}, \rho_{2}^{0}, \rho_{3}^{++}\right), \eta=\left(\eta_{1}^{0}, \eta_{2}^{-}, \eta_{3}^{+}\right), \chi=\left(\chi_{1}^{-}, \chi_{2}^{--}, \chi_{3}^{0}\right) .
$$

\triangleright In order to enrich the inert scalar sector, one can consider the reduced 3-3-1 model by excluding η, or the simple 3-3-1 model by excluding ρ. The reduced 3-3-1 model gives large flavor-changing neutral currents as well as large ρ parameter.
\triangleright The simple 3-3-1 model with the replication of η or of χ, which are additional inert scalars, can provide realistic dark matter candidates.

The simple 3-3-1 model

The model works well with two scalar triplets as

$$
\begin{aligned}
\eta & =\left(\begin{array}{c}
\frac{1}{\sqrt{2}}\left(u+S_{1}+i A_{1}\right) \\
\eta_{2}^{-} \\
\eta_{3}^{+}
\end{array}\right) \sim(1,3,0), \\
\chi & =\left(\begin{array}{c}
\chi_{1}^{-} \\
\chi_{2}^{--} \\
\frac{1}{\sqrt{2}}\left(\omega+S_{3}+i A_{3}\right)
\end{array}\right) \sim(1,3,-1) .
\end{aligned}
$$

The scalar potential is given by

$$
\begin{aligned}
V_{\text {simple }}= & \mu_{1}^{2} \eta^{\dagger} \eta+\mu_{2}^{2} \chi^{\dagger} \chi+\lambda_{1}\left(\eta^{\dagger} \eta\right)^{2}+\lambda_{2}\left(\chi^{\dagger} \chi\right)^{2} \\
& +\lambda_{3}\left(\eta^{\dagger} \eta\right)\left(\chi^{\dagger} \chi\right)+\lambda_{4}\left(\eta^{\dagger} \chi\right)\left(\chi^{\dagger} \eta\right),
\end{aligned}
$$

where $\mu_{1,2}$ have dimension of mass, while $\lambda_{1,2,3,4}$ are dimensionless.

The Higgs sector contains

+ eight Goldstone bosons $G_{Z} \equiv A_{1}, G_{Z^{\prime}} \equiv A_{3}, G_{W}^{ \pm} \equiv \eta_{2}^{ \pm}, G_{Y}^{ \pm \pm} \equiv \chi_{2}^{ \pm \pm}$
and $G_{X}^{ \pm} \equiv c_{\theta} \chi_{1}^{ \pm}-s_{\theta} \eta_{3}^{ \pm} \simeq \chi_{1}^{ \pm}\left(t_{\theta}=\frac{u}{\omega} \rightarrow 0\right.$ since $\left.u \ll \omega\right)$
+ four massive scalars

$$
\begin{aligned}
& h \simeq S_{1}, \quad m_{h}^{2} \simeq \frac{4 \lambda_{1} \lambda_{2}-\lambda_{3}^{2}}{2 \lambda_{2}} u^{2} \\
& H \simeq S_{3}, \quad m_{H}^{2} \simeq 2 \lambda_{2} \omega^{2} \\
& H^{ \pm} \simeq \eta_{3}^{ \pm}, \quad m_{H^{ \pm}}^{2} \simeq \frac{\lambda_{4}}{2} \omega^{2}
\end{aligned}
$$

The gauge boson masses arise from the Lagrangian

$$
\sum_{\Phi=\eta, \chi}\left(D_{\mu}\langle\Phi\rangle\right)^{\dagger}\left(D^{\mu}\langle\Phi\rangle\right)
$$

where the covariant derivative is defined as

$$
D_{\mu}=\partial_{\mu}+i g_{s} t_{i} G_{i \mu}+i g T_{i} A_{i \mu}+i g_{X} X B_{\mu}
$$

The gauge bosons with their masses are respectively given as

$$
\begin{gathered}
W^{ \pm} \equiv \frac{A_{1} \mp i A_{2}}{\sqrt{2}}, \quad m_{W}^{2}=\frac{g^{2}}{4} u^{2}, \\
X^{\mp} \equiv \frac{A_{4} \mp i A_{5}}{\sqrt{2}}, \quad m_{X}^{2}=\frac{g^{2}}{4}\left(\omega^{2}+u^{2}\right), \\
Y^{\mp \mp} \equiv \frac{A_{6} \mp i A_{7}}{\sqrt{2}}, \quad m_{Y}^{2}=\frac{g^{2}}{4} \omega^{2}, \\
A=s_{W} A_{3}+c_{W}\left(-\sqrt{3} t_{W} A_{8}+\sqrt{1-3 t_{W}^{2}} B\right), \quad m_{A}=0, \\
Z_{1} \simeq c_{W} A_{3}-s_{W}\left(-\sqrt{3} t_{W} A_{8}+\sqrt{1-3 t_{W}^{2}} B\right), \quad m_{Z_{1}}^{2} \simeq \frac{g^{2}}{4 c_{W}^{2}} u^{2}, \\
Z_{2} \simeq \sqrt{1-3 t_{W}^{2}} A_{8}+\sqrt{3} t_{W} B, \quad m_{Z_{2}}^{2} \simeq \frac{g^{2} c_{W}^{2}}{3\left(1-4 s_{W}^{2}\right)} \omega^{2},
\end{gathered}
$$

where $s_{W}=e / g=t / \sqrt{1+4 t^{2}}$, with $t=g_{X} / g$.

The Yukawa Lagrangian is given by

$$
\begin{aligned}
\mathcal{L}_{Y}= & h_{33}^{J} \bar{Q}_{3 L \chi} J_{3 R}+h_{\alpha \beta}^{J} \bar{Q}_{\alpha L} \chi^{*} J_{\beta R} \\
& +h_{3 a}^{u} \bar{Q}_{3 L} \eta u_{a R}+\frac{h_{\alpha a}^{u}}{\Lambda} \bar{Q}_{\alpha L} \eta \chi u_{a R} \\
& +h_{\alpha a}^{d} \bar{Q}_{\alpha L} \eta^{*} d_{a R}+\frac{h_{3 a}^{d}}{\Lambda} \bar{Q}_{3 L} \eta^{*} \chi^{*} d_{a R} \\
& +h_{a b}^{e} \bar{\psi}_{a L}^{c} \psi_{b L} \eta+\frac{h_{a b}^{\prime e}}{\Lambda^{2}}\left(\bar{\psi}_{a L}^{c} \eta \chi\right)\left(\psi_{b L} \chi^{*}\right) \\
& +\frac{s_{a b}^{\nu}}{\Lambda}\left(\bar{\psi}_{a L}^{c} \eta^{*}\right)\left(\psi_{b L} \eta^{*}\right)+\text { H.c. },
\end{aligned}
$$

where the $\Lambda \sim \omega$.

The simple 3-3-1 model with η replication

 (called η^{\prime}-model for shortcut)An extra scalar triplet that replicates η is defined as

$$
\eta^{\prime}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}}\left(H_{1}^{\prime}+i A_{1}^{\prime}\right) \\
\eta_{2}^{\prime-} \\
\eta_{3}^{\prime+}
\end{array}\right) \sim(1,3,0) .
$$

The η^{\prime} and η have the same gauge quantum numbers but η^{\prime} is assigned as an odd field under the $Z_{2}, \eta^{\prime} \rightarrow-\eta^{\prime}$, so $<\eta^{\prime}>=0$.
The scalar potential includes the $V_{\text {simple }}$ and the terms contained η^{\prime},

$$
\begin{aligned}
V_{\eta^{\prime}}= & \mu_{\eta^{\prime}}^{2} \eta^{\prime \dagger} \eta^{\prime}+x_{1}\left(\eta^{\prime \dagger} \eta^{\prime}\right)^{2}+x_{2}\left(\eta^{\dagger} \eta\right)\left(\eta^{\prime \dagger} \eta^{\prime}\right)+x_{3}\left(\chi^{\dagger} \chi\right)\left(\eta^{\prime \dagger} \eta^{\prime}\right) \\
& +x_{4}\left(\eta^{\dagger} \eta^{\prime}\right)\left(\eta^{\prime \dagger} \eta\right)+x_{5}\left(\chi^{\dagger} \eta^{\prime}\right)\left(\eta^{\prime \dagger} \chi\right)+\frac{1}{2}\left[x_{6}\left(\eta^{\prime \dagger} \eta\right)^{2}+H . c .\right] .
\end{aligned}
$$

Here, $\mu_{\eta^{\prime}}$ has mass dimension, while $x_{i}(i=1,2,3, \ldots, 6)$ are dimensionless.

The states $H_{1}^{\prime}, A_{1}^{\prime}, \eta_{2}^{\prime \pm} \equiv H_{2}^{\prime \pm}$ and $\eta_{3}^{\prime \pm} \equiv H_{3}^{\prime \pm}$ by themselves are physically inert particles with the corresponding masses as follows:

$$
\begin{aligned}
m_{H_{1}^{\prime}}^{2} & =M_{\eta^{\prime}}^{2}+\frac{1}{2}\left(x_{4}+x_{6}\right) u^{2}, \quad m_{A_{1}^{\prime}}^{2}=M_{\eta^{\prime}}^{2}+\frac{1}{2}\left(x_{4}-x_{6}\right) u^{2} \\
m_{H_{2}^{\prime \pm}}^{2} & =M_{\eta^{\prime}}^{2}, \quad m_{H_{3}^{\prime \pm}}^{2}=M_{\eta^{\prime}}^{2}+\frac{1}{2} x_{5} \omega^{2}
\end{aligned}
$$

where $M_{\eta^{\prime}}^{2} \equiv \mu_{\eta^{\prime}}^{2}+\frac{1}{2} x_{2} u^{2}+\frac{1}{2} x_{3} w^{2}$. If $H_{1}^{\prime}\left(\right.$ or $\left.A_{1}^{\prime}\right)$ is the lightest inert particle (LIP), it can be the dark matter candidate.

Due to the Z_{2} symmetry, the inert scalars interact only with normal scalars and gauge bosons, not with fermions.
The interactions of the inert scalars with gauge bosons are given in

$$
\begin{aligned}
\mathcal{L}_{\text {gauge }-\eta^{\prime}}^{\text {triple }} & =-i g\left[\eta^{\prime \dagger}\left(T_{i} A_{i \mu}\right) \partial^{\mu} \eta^{\prime}\right]+\text { H.c. } \\
\mathcal{L}_{\text {gauge }-\eta^{\prime}}^{\text {quartic }} & =g^{2}\left[\eta^{\prime \dagger}\left(T_{i} A_{i \mu}\right)^{2} \eta^{\prime}\right]
\end{aligned}
$$

The simple 3-3-1 model with χ replication

(called χ^{\prime}-model for shortcut)
The χ replication takes the form

$$
\chi^{\prime}=\left(\begin{array}{c}
\chi_{1}^{\prime-} \\
\chi_{2}^{\prime--} \\
\frac{1}{\sqrt{2}}\left(H_{3}^{\prime}+i A_{3}^{\prime}\right)
\end{array}\right) \sim(1,3,-1) .
$$

The χ^{\prime} is assigned odd under the Z_{2} symmetry that requires $<\chi^{\prime}>=0$.
The additional potential due to the χ^{\prime} field is given as

$$
\begin{aligned}
V_{\chi^{\prime}}= & \mu_{\chi^{\prime}}^{2} \chi^{\prime \dagger} \chi^{\prime}+y_{1}\left(\chi^{\prime \dagger} \chi^{\prime}\right)^{2}+y_{2}\left(\eta^{\dagger} \eta\right)\left(\chi^{\prime \dagger} \chi^{\prime}\right)+y_{3}\left(\chi^{\dagger} \chi\right)\left(\chi^{\prime \dagger} \chi^{\prime}\right) \\
& +y_{4}\left(\eta^{\dagger} \chi^{\prime}\right)\left(\chi^{\prime \dagger} \eta\right)+y_{5}\left(\chi^{\dagger} \chi^{\prime}\right)\left(\chi^{\prime \dagger} \chi\right)+\frac{1}{2}\left[y_{6}\left(\chi^{\prime \dagger} \chi\right)^{2}+\text { H.c. }\right] . \\
m_{H_{3}^{\prime}}^{2}= & M_{\chi^{\prime}}^{2}+\frac{1}{2}\left(y_{5}+y_{6}\right) \omega^{2}, \quad m_{A_{3}^{\prime}}^{2}=M_{\chi^{\prime}}^{2}+\frac{1}{2}\left(y_{5}-y_{6}\right) \omega^{2}, \\
m_{H_{2}^{\prime \pm \pm}}^{2}= & M_{\chi^{\prime}}^{2}, \quad m_{H_{1}^{\prime \pm}}^{2}=M_{\chi^{\prime}}^{2}+\frac{1}{2} y_{4} u^{2},
\end{aligned}
$$

where $M_{\chi^{\prime}}^{2} \equiv \mu_{\chi^{\prime}}^{2}+\frac{1}{2} y_{2} u^{2}+\frac{1}{2} y_{3} \omega^{2}$. If $H_{3}^{\prime}\left(\right.$ or $\left.A_{3}^{\prime}\right)$ is the LIP, it can be the dark matter candidate.

Dark matter

The coupling λ_{1} is constrained by the mass of the SM Higgs, $m_{h}=125$
GeV . Fix $\lambda_{2}=\lambda_{3}=\lambda_{4}=0.1$.
In η^{\prime}-model:
The inert particles are $H_{1}^{\prime}, A_{1}^{\prime}, H_{2}^{\prime \pm}, H_{3}^{\prime \pm}$. With the condition $x_{6}<\operatorname{Min}\left\{0,-x_{4},(w / u)^{2} x_{5}-x_{4}\right\}, H_{1}^{\prime}$ is the LIP $\Rightarrow H_{1}^{\prime}$ is the DM candidate.
Fix

$$
x_{1}=0.01, x_{2}=0.03, x_{3}=0.01, x_{4}=0.07, x_{5}=0.08, x_{6}=-0.09
$$

$m_{H_{1}^{\prime}}$ depends on $\mu_{\eta^{\prime}}$ and ω.
In χ^{\prime}-model:
The inert particles are $H_{1}^{\prime \pm}, H_{2}^{\prime \pm \pm}, H_{3}^{\prime}, A_{3}^{\prime}$. If we assume that $y_{6}<\operatorname{Min}\left\{0,-y_{5},(u / w)^{2} y_{4}-y_{5}\right\}, H_{3}^{\prime}$ is the LIP $\Rightarrow H_{3}^{\prime}$ is the DM candidate.
Fix
$y_{1}=0.01, y_{2}=0.04, y_{3}=0.058, y_{4}=0.01, y_{5}=0.05, y_{6}=-0.06$.
$m_{H_{3}^{\prime}}$ depends on $\mu_{\chi^{\prime}}$ and ω.

We figure out the relic density as a function of DM mass for $\omega=3 \mathrm{TeV}$ (red), $\omega=4 \mathrm{TeV}$ (green), and $\omega=5 \mathrm{TeV}$ (blue). (The horizontal line is the WMAP limit on the relic density.)

$$
\eta^{\prime} \text {-model }
$$

χ^{\prime}-model

4. Inflation and Leptogenesis in the 3-3-1-1 Model

Motivation of the 3-3-1-1 model

\triangleright In the 3-3-1 model the lepton number of three components in a triplet are different, so the lepton number operator does not commute with the generators of the unitary group $S U(3)_{L}$. So, one constructed lepton number operator as the combination of T_{3}, T_{8}, and charged \mathcal{L} with the relation $L=\alpha^{\prime} T_{3}+\beta^{\prime} T_{8}+\mathcal{L} l . L$ is considered as a global symmetry.
\triangleright Since T_{3}, T_{8} are gauged charges of the $S U(3)_{L}$ symmetry, L, \mathcal{L} should be gauged or local generators.
\Rightarrow We extend the gauge group $S U(3)_{C} \otimes S U(3)_{L} \otimes U(1)_{X}$ to $S U(3)_{C} \otimes S U(3)_{L} \otimes U(1)_{X} \otimes U(1)_{N}(3-3-1-1)$, where $N=\mathcal{B}-\mathcal{L}$, $B=\mathcal{B} l$ so that the anomalies associated with $U(1)_{N}$ and with the usual 3-3-1 symmetry obviously vanish.
\triangleright The Higgs scalar breaks the $U(1)_{N}$ symmetry can play a role of inflaton.
\triangleright The right-handed neutrinos not only solve the small masses of the observed neutrinos through a type I seesaw mechanism but also can be a source for the $C P$ asymmetry.
\triangleright We apply the extension to the version with neutral fermions because there are some odd particles under the parity $P=(-1)^{3(B-L)+2 s}$.

Review particles in the 3-3-1-1 model Particle content
The fermion content of the 3-3-1-1 model which is anomaly free is given as

$$
\begin{aligned}
\psi_{a L} & =\left(\begin{array}{c}
\nu_{a L} \\
e_{a L} \\
\left(N_{a R}\right)^{c}
\end{array}\right) \sim(1,3,-1 / 3,-2 / 3), \\
\nu_{a R} & \sim(1,1,0,-1), \quad e_{a R} \sim(1,1,-1,-1), \\
Q_{\alpha L} & =\left(\begin{array}{c}
d_{\alpha L} \\
-u_{\alpha L} \\
D_{\alpha L}
\end{array}\right) \sim\left(3,3^{*}, 0,0\right), \quad Q_{3 L}=\left(\begin{array}{c}
u_{3 L} \\
d_{3 L} \\
U_{L}
\end{array}\right) \sim(3,3,1 / 3,2 / 3) \\
U_{a R} & \sim(3,1,2 / 3,1 / 3), \quad d_{a R} \sim(3,1,-1 / 3,1 / 3) \\
U_{R} & \sim(3,1,2 / 3,4 / 3), \quad D_{\alpha R} \sim(3,1,-1 / 3,-2 / 3)
\end{aligned}
$$

where the quantum numbers located in the parentheses are defined upon the gauge symmetries $\left(S U(3)_{C}, S U(3)_{L}, U(1)_{X}, U(1)_{N}\right)$, respectively. The family indices are $a=1,2,3$ and $\alpha=1,2$.
The $N_{a R}$ are the neutral leptons and U, D_{α} are the exotic quarks.

To break the gauge symmetry and generate the masses in a correct way, the 3-3-1-1 model needs the following scalar multiplets with their VEVs conserving Q and P :

$$
\begin{aligned}
\rho & =\left(\rho_{1}^{+}, \rho_{2}^{0}, \rho_{3}^{+}\right)^{T} \sim(1,3,2 / 3,1 / 3), \quad\langle\rho\rangle=\frac{1}{\sqrt{2}}(0, v, 0)^{T}, \\
\eta & =\left(\eta_{1}^{0}, \eta_{2}^{-}, \eta_{3}^{0}\right)^{T} \sim(1,3,-1 / 3,1 / 3), \quad\langle\eta\rangle=\frac{1}{\sqrt{2}}(u, 0,0)^{T}, \\
\chi & =\left(\chi_{1}^{0}, \chi_{2}^{-}, \chi_{3}^{0}\right)^{T} \sim(1,3,-1 / 3,-2 / 3), \quad\langle\chi\rangle=\frac{1}{\sqrt{2}}(0,0, \omega)^{T}, \\
\phi & \sim(1,1,0,2), \quad\langle\phi\rangle=\frac{1}{\sqrt{2}} \Lambda .
\end{aligned}
$$

The gauge group $S U(3)_{L} \otimes U(1)_{X} \otimes U(1)_{N}$ is broken:

$$
S U(3)_{L} \otimes U(1)_{X} \otimes U(1)_{N} \rightarrow U(1)_{Q} \otimes U(1)_{B-L} .
$$

The Yukawa interactions and scalar potential are obtained as

$$
\begin{aligned}
\mathcal{L}_{\text {Yukawa }}= & h_{a b}^{e} \bar{\psi}_{a L} \rho e_{b R}+h_{a b}^{\nu} \bar{\psi}_{a L} \eta \nu_{b R}+h_{a b}^{\prime \nu} \bar{\nu}_{a R}^{c} \nu_{b R} \phi+h^{U} \bar{Q}_{3 L} \chi U_{R} \\
& +h_{\alpha \beta}^{D} \bar{Q}_{\alpha L \chi^{*} D_{\beta R}+h_{a}^{u} \bar{Q}_{3 L} \eta u_{a R}+h_{a}^{d} \bar{Q}_{3 L} \rho d_{a R}} \\
& +h_{\alpha a}^{d} \bar{Q}_{\alpha L} \eta^{*} d_{a R}+h_{\alpha a}^{u} \bar{Q}_{\alpha L} \rho^{*} u_{a R}+H . c
\end{aligned}
$$

$$
\begin{aligned}
V(\rho, \eta, \chi, \phi)= & \mu_{1}^{2} \rho^{\dagger} \rho+\mu_{2}^{2} \chi^{\dagger} \chi+\mu_{3}^{2} \eta^{\dagger} \eta+\lambda_{1}\left(\rho^{\dagger} \rho\right)^{2}+\lambda_{2}\left(\chi^{\dagger} \chi\right)^{2} \\
& +\lambda_{3}\left(\eta^{\dagger} \eta\right)^{2}+\lambda_{4}\left(\rho^{\dagger} \rho\right)\left(\chi^{\dagger} \chi\right)+\lambda_{5}\left(\rho^{\dagger} \rho\right)\left(\eta^{\dagger} \eta\right) \\
& +\lambda_{6}\left(\chi^{\dagger} \chi\right)\left(\eta^{\dagger} \eta\right)+\lambda_{7}\left(\rho^{\dagger} \chi\right)\left(\chi^{\dagger} \rho\right)+\lambda_{8}\left(\rho^{\dagger} \eta\right)\left(\eta^{\dagger} \rho\right) \\
& +\lambda_{9}\left(\chi^{\dagger} \eta\right)\left(\eta^{\dagger} \chi\right)+\left(f \epsilon^{m n p} \eta_{m} \rho_{n} \chi_{p}+H . c .\right)+\mu^{2} \phi^{\dagger} \phi \\
& +\lambda\left(\phi^{\dagger} \phi\right)^{2}+\lambda_{10}\left(\phi^{\dagger} \phi\right)\left(\rho^{\dagger} \rho\right)+\lambda_{11}\left(\phi^{\dagger} \phi\right)\left(\chi^{\dagger} \chi\right)+\lambda_{12}\left(\phi^{\dagger} \phi\right)\left(\eta^{\dagger} \eta\right) .
\end{aligned}
$$

Scalar sector

We expand the neutral scalars around their VEVs such as

$$
\begin{aligned}
& \rho=\left(\begin{array}{c}
\rho_{1}^{+} \\
\frac{1}{\sqrt{2}}\left(v+S_{2}+i A_{2}\right) \\
\rho_{3}^{+}
\end{array}\right) ; \quad \eta=\left(\begin{array}{c}
\frac{1}{\sqrt{2}}\left(u+S_{1}+i A_{1}\right) \\
\eta_{2}^{-} \\
\frac{1}{\sqrt{2}}\left(S_{3}^{\prime}+i A_{3}^{\prime}\right)
\end{array}\right) ; \\
& \chi=\left(\begin{array}{c}
\frac{1}{\sqrt{2}}\left(S_{1}^{\prime}+i A_{1}^{\prime}\right) \\
\chi_{2}^{-} \\
\frac{1}{\sqrt{2}}\left(\omega+S_{3}+i A_{3}\right)
\end{array}\right) ; \quad \phi \sim \frac{1}{\sqrt{2}}\left(\Lambda+S_{4}+i A_{4}\right) .
\end{aligned}
$$

We assume that f, ω are the same order and $\Lambda \gg \omega \gg u, v$. The physical fields with respective masses can be written as:
For charged scalars,

$$
\begin{aligned}
& H_{4}^{-}=\frac{v \chi_{2}^{-}+\omega \rho_{3}^{-}}{\sqrt{v^{2}+\omega^{2}}}, \quad H_{5}^{-}=\frac{v \eta_{2}^{-}+u \rho_{1}^{-}}{\sqrt{u^{2}+v^{2}}} \\
& G_{Y}^{-}=\frac{\omega \chi_{2}^{-}-v \rho_{3}^{-}}{\sqrt{v^{2}+\omega^{2}}}, G_{W}^{-}=\frac{u \eta_{2}^{-}-v \rho_{1}^{-}}{\sqrt{u^{2}+v^{2}}}
\end{aligned}
$$

The pseudoscalar A_{4} is massless.

$$
\begin{gathered}
A=\frac{u^{-1} A_{1}+v^{-1} A_{2}+\omega^{-1} A_{3}}{\sqrt{u^{-2}+v^{-2}+\omega^{-2}}} . \\
G_{Z}=\frac{-u A_{1}+v A_{2}}{\sqrt{u^{2}+v^{2}}}, \quad G_{Z^{\prime}}=\frac{-\omega^{-1}\left(u^{-1} A_{1}+v^{-1} A_{2}\right)+\left(u^{-2}+v^{-2}\right) A_{3}}{\sqrt{\left(u^{-2}+v^{-2}+\omega^{-2}\right)\left(u^{-2}+v^{-2}\right)}}, \\
G_{X}=\frac{\omega \chi_{1}-u \eta_{3}^{*}}{\sqrt{u^{2}+\omega^{2}}}, \quad H^{\prime}=\frac{u \chi_{1}^{*}+\omega \eta_{3}}{\sqrt{u^{2}+\omega^{2}}} .
\end{gathered}
$$

For neutral scalars,

$$
H=\frac{u S_{1}+v S_{2}}{\sqrt{u^{2}+v^{2}}}, \quad H_{1}=\frac{-v S_{1}+u S_{2}}{\sqrt{u^{2}+v^{2}}}, \quad H_{2}=S_{3}, \quad H_{3} \simeq S_{4} .
$$

H is identified as the SM Higgs boson.

Gauge sector

$$
\begin{gathered}
W_{\mu}^{ \pm}=\frac{A_{1 \mu} \mp i A_{2 \mu}}{\sqrt{2}}, Y_{\mu}^{\mp}=\frac{A_{6 \mu} \mp i A_{7 \mu}}{\sqrt{2}}, X_{\mu}^{0}=\frac{A_{4 \mu}-i A_{5 \mu}}{\sqrt{2}} \\
M_{W}^{2}=\frac{1}{4} g^{2}\left(u^{2}+v^{2}\right), M_{Y}^{2}=\frac{1}{4} g^{2}\left(v^{2}+\omega^{2}\right), M_{X}^{2}=\frac{1}{4} g^{2}\left(u^{2}+\omega^{2}\right) . \\
M_{\gamma}^{2}=0(\text { exact }), \mathrm{A}_{\mu}=\frac{\sqrt{3}}{\sqrt{3+4 \mathrm{t}_{1}^{2}}}\left(\mathrm{t}_{1} \mathrm{~A}_{3 \mu}-\frac{\mathrm{t}_{1}}{\sqrt{3}} \mathrm{~A}_{8 \mu}+\mathrm{B}_{\mu}\right) . \\
Z_{\mu}^{N} \simeq C_{\mu}, \quad m_{Z^{N}}^{2} \simeq 4 g^{2} t_{2}^{2} \Lambda^{2} \\
Z_{\mu}^{1} \simeq \frac{\sqrt{3+t_{1}^{2}}}{\sqrt{3+4 t_{1}^{2}}} A_{3 \mu}+\frac{t_{1}\left(\sqrt{3} t_{1} A_{8 \mu}-3 B_{\mu}\right)}{\sqrt{3+t_{1}^{2}} \sqrt{3+4 t_{1}^{2}}}, \quad m_{Z^{1}}^{2} \simeq \frac{g^{2}\left(u^{2}+v^{2}\right)}{4 c_{W}^{2}}, \\
Z_{\mu}^{2} \simeq \frac{\sqrt{3}}{\sqrt{3+t_{1}^{2}}} A_{8 \mu}+\frac{t_{1}}{\sqrt{3+t_{1}^{2}}} B_{\mu}, \quad m_{Z^{2}}^{2} \simeq \frac{g^{2} c_{W}^{2} \omega^{2}}{\left(3-4 s_{W}^{2}\right)} .
\end{gathered}
$$

Note that we have set $t_{1} \equiv g_{X} / g, t_{2} \equiv g_{N} / g$.

Fermion sector

From the $\mathcal{L}_{\text {Yukawa }}$, we obtain the Dirac masses for all quarks and leptons. The right-handed neutrinos get Majorana masses in the form $-\frac{1}{2} \bar{\nu}_{R}^{c} m_{\nu}^{M} \nu_{R}+$ H.c., where

$$
\left[m_{\nu}^{M}\right]_{a b}=-\sqrt{2} h_{a b}^{\prime \nu} \Lambda .
$$

The observed neutrinos ($\sim \nu_{L}$) naturally get small masses via a type I seesaw mechanism,

$$
m_{\nu}^{\mathrm{eff}}=-m_{\nu}^{D}\left(m_{\nu}^{M}\right)^{-1}\left(m_{\nu}^{D}\right)^{T} \sim \frac{\left(h^{\nu}\right)^{2}}{h^{\prime \nu}} \frac{u^{2}}{\Lambda}
$$

The masses of the neutral fermions N_{R} can be generated via an effective operator invariant under the 3-3-1-1 symmetry

$$
\begin{aligned}
& \frac{\lambda_{a b}}{M} \bar{\psi}_{a L}^{c} \psi_{b L}(\chi \chi)^{*}+\text { H.c. } \\
& {\left[m_{N_{R}}\right]_{a b}=-\lambda_{a b} \frac{\omega^{2}}{M}}
\end{aligned}
$$

Assume that $M \sim \omega$ then $m_{N_{R}} \sim \omega$.

In brief,
\triangleright After spontaneous symmetry breaking, there are

- 9 goldstone bosons $A_{4}, G_{Z}, G_{Z^{\prime}}, G_{X}, G_{X}^{*}, G_{Y}^{ \pm}, G_{W}^{ \pm}$,
- 9 massive gauge bosons $Z^{N}, Z^{1}, Z^{2}, X^{0}, X^{0 *}, Y^{ \pm}, W^{ \pm}$, and one massless γ,
- 4 neutral Higgs bosons H, H_{1}, H_{2}, H_{3}, one massive pseudoscalar A, complex Higgs $H^{\prime}, H^{*}, 4$ charged scalars $H_{4}^{ \pm}, H_{5}^{ \pm}$
\triangleright The mass of H_{3}, Z^{N}, ν_{R} is proportional to Λ.
The mass of other new massive particles, $A, H_{1}, H_{2}, H_{4}^{ \pm}, H_{5}^{ \pm}, H^{\prime}, H^{*}$, $Z_{\mu}^{2}, X_{\mu}^{0}, X_{\mu}^{0 *}, Y_{\mu}^{ \pm}, U, D_{\alpha}, N_{R}$, is proportional to ω.
\triangleright In this model, $L\left(G_{X}, H^{*}, H_{4}^{-}, G_{Y}^{-}, X^{0}, Y^{-}\right)=1$ while the remaining Higgs and gauge bosons have zero lepton number.
\triangleright The Majorana masses of the right-handed neutrinos violate L with ± 2 units \rightarrow The decay of Majorana right-handed neutrinos can generate the lepton asymmetry.

Generation of inflation in the $3-3-1-1$ model

The scalar singlet ϕ is completely breaking $U(1)_{N}$. We expect that the VEV of ϕ is very high and consider the singlet scalar ϕ plays the role of inflaton field.
We identify the inflaton with the real part of the $B-L$ Higgs field, $\Phi=\sqrt{2} \mathcal{R}[\phi]$. In the leading- log approximation, we obtain

$$
V(\Phi)=V_{\mathrm{tree}}+V_{\mathrm{eff}} \simeq \frac{\lambda}{4}\left(\Phi^{4}+a^{\prime} \Phi^{4} \ln \frac{\Phi}{\Delta}\right)
$$

where

$$
a^{\prime}=\frac{a+72 \lambda^{2}}{16 \pi^{2} \lambda}, \quad a=f\left(h_{i i}^{\prime \nu}, g_{N}, \lambda_{10,11,12}\right)
$$

We can express the number of e-folds N, the spectral index n_{s}, the tensor to scalar ratio r (a canonical measure of gravity wave from inflation) and the running index α in terms of a^{\prime}, Δ, Φ. Experiments require $n_{s} \in(0.94,0.98), r \in(0.001,0.15), \alpha \in(-0.0314,0.0046)$.
We fix $N=60$.

$$
\begin{gathered}
V^{\prime}(\Phi)=0 \Rightarrow<\Phi>\simeq 23.6 m_{\mathrm{P}} \\
m_{\Phi}=\left.\sqrt{V^{\prime \prime}(\Phi)}\right|_{\Phi=<\Phi>} \simeq 2.67 \times 10^{13} \mathrm{GeV}
\end{gathered}
$$

Leptogenesis

CP asymmetry

The Majorana neutrinos are defined as

$$
\begin{aligned}
\nu_{i M} & =\nu_{i R}+\nu_{i R}^{c} \\
\nu_{i E} & =\nu_{i L}+\nu_{i L}^{c} \\
N_{i} & =N_{i R}+N_{i R}^{c}
\end{aligned}
$$

$\bar{e}_{i} \nu_{k M} H_{5}^{-}, \bar{N}_{i} H^{\prime} \nu_{k M}$ interactions violate the lepton number $\Longrightarrow \nu_{k M}$ can generate lepton asymmetry.

$$
\begin{aligned}
\varepsilon_{\nu_{k M}}^{i(1)}= & \frac{\Gamma\left(\nu_{k M} \rightarrow e_{i}+H_{5}^{+}\right)-\Gamma\left(\nu_{k M} \rightarrow \bar{e}_{i}+H_{5}^{-}\right)}{2 \Gamma_{\nu_{k M}}} \\
\simeq & \frac{1}{8 \pi C_{0}}[\text { gauge transportation }] s_{\beta}^{2} \sum_{l} \operatorname{Im}\left[h_{i k}^{\nu *} h_{l k}^{\nu}\right] \\
& +\frac{s_{\beta}^{4}}{8 \pi C_{0}} \sum_{j} \sqrt{g_{j}}\left[1-\left(1+g_{j}\right) \log \left[1+1 / g_{j}\right]+\left(1-g_{j}\right)^{-1}\right] \operatorname{Im}\left[\left(h^{\nu \dagger} h^{\nu}\right)_{k j} h_{i k}^{\nu *} h_{i j}^{\nu}\right]
\end{aligned}
$$

where $\Gamma_{\nu_{k M}}$ is the total decay rate of $\nu_{k M}$ at tree level,

$$
\begin{aligned}
g_{j} & =\frac{m_{\nu_{j M}}^{2}}{m_{\nu_{k M}}^{2}}, \quad C_{0}=\left(2+s_{\beta}^{2}\right) \sum_{i}\left|h_{i k}^{\nu}\right|^{2}=\left(2+s_{\beta}^{2}\right)\left(h^{\nu \dagger} h^{\nu}\right)_{k k}, \quad t_{\beta}=v / u \\
& \varepsilon_{\nu_{k M}}^{i(2)}=\frac{\Gamma\left(\nu_{k M} \rightarrow N_{i}+H^{\prime *}\right)-\Gamma\left(\nu_{k M} \rightarrow N_{i}+H^{\prime}\right)}{2 \Gamma_{\nu_{k M}}} \\
& \simeq \frac{1}{8 \pi C_{0}}[\text { gauge transportation }] \sum_{l} \operatorname{Im}\left[h_{i k}^{\nu *} h_{l k}^{\nu}\right] \\
& +\frac{1}{8 \pi C_{0}} \sum_{j} \sqrt{g_{j}}\left[1-\left(1+g_{j}\right) \log \left[1+1 / g_{j}\right]+s_{\beta}^{2}\left(1-g_{j}\right)^{-1}\right] \operatorname{Im}\left[\left(h^{\nu \dagger} h^{\nu}\right)_{k j} h_{i k}^{\nu *} h_{i j}^{\nu}\right]
\end{aligned}
$$

Yukawa coupling matrix

h^{ν} matrix is required to be complex.
If we ignore
-the mixing between the charged lepton
-the mixing between heavy Majorana neutrinos, the most general h^{ν} matrix is given by

$$
h^{\nu}=\frac{\sqrt{2}}{u} \operatorname{Diag}\left(\sqrt{m_{\nu_{1} M}}, \sqrt{m_{\nu_{2} M}}, \sqrt{m_{\nu_{3} M}}\right) \cdot R \cdot \operatorname{Diag}\left(\sqrt{m_{\nu_{1}}}, \sqrt{m_{\nu_{2}}}, \sqrt{m_{\nu_{3}}}\right) \cdot U^{\dagger}
$$

where R is an orthogonal matrix expressed in terms of arbitrary complex angles $\widehat{\theta}_{1}, \widehat{\theta}_{2}, \widehat{\theta}_{3}$ as following

$$
R=\left(\begin{array}{ccc}
\widehat{c}_{2} \widehat{c}_{3} & -\widehat{c}_{1} \widehat{s}_{3}-\hat{s}_{1} \hat{s}_{2} \widehat{c}_{3} & \widehat{s}_{1} \widehat{s}_{3}-\widehat{c}_{1} \widehat{s}_{2} \widehat{c}_{3} \\
\widehat{c}_{2} \widehat{s}_{3} & \widehat{c}_{1} \widehat{c}_{3}-\widehat{s}_{1} \widehat{s}_{2} \widehat{s}_{3} & -\widehat{s}_{1} \hat{c}_{3}-\widehat{c}_{1} \hat{s}_{2} \hat{s}_{3} \\
\widehat{s}_{2} & \widehat{s}_{1} \hat{c}_{2} & \widehat{c}_{1} \widehat{c}_{2}
\end{array}\right)
$$

where $\widehat{c}_{i}=\cos \widehat{\theta}_{i}, \widehat{s}_{i}=\sin \widehat{\theta}_{i}, i=1,2,3$.

$$
\begin{aligned}
& U=U_{\text {PMNS }} \cdot P, \\
& U_{\text {PMNS }}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right), \\
& P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \sigma} & 0 \\
0 & 0 & e^{i \rho}
\end{array}\right),
\end{aligned}
$$

where $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}$,

$$
\sin ^{2} \theta_{23} \simeq 0.466, \quad \sin ^{2} \theta_{12} \simeq 0.312, \quad \sin ^{2} \theta_{13} \simeq 0.016
$$

$\Delta m_{\nu_{12}}^{2}=m_{\nu_{2}}^{2}-m_{\nu_{1}}^{2}=7.53 \times 10^{-5} \mathrm{eV}^{2}, \Delta m_{\nu_{23}}^{2}=m_{\nu_{3}}^{2}-m_{\nu_{2}}^{2}=2.44 \times 10^{-3} \mathrm{eV}^{2}$.
δ is unknown CP violating Dirac phase. σ, ρ are the CP violating Majorana phases.
$h_{a b}^{\nu}$ are function of the phase δ, ρ, σ, the heavy majorana neutrinos masses and the complex angles. For simplicity, we assume $\widehat{\theta}_{1}=\widehat{\theta}_{2}=\widehat{\theta}_{3} \equiv \widehat{\theta}$.

Thermal production

In the thermal scenario, the heavy Majorana neutrinos are produced in a thermal bath.
For the channel $\nu_{k M} \rightarrow e_{i} H_{5}^{+}, \bar{e}_{i} H_{5}^{-}$the CP asymmetry depends on flavor because $L_{i}\left(e_{i}\right)=1$. However, since $L\left(N_{i}\right)=0, L\left(H^{\prime}\right)=-1$, the CP asymmetry due to the decay $\nu_{k M} \rightarrow N_{i} H^{*}, N_{i} H^{\prime}$ is considered flavor independent.
Assume that $\nu_{1 M} \ll \nu_{2 M}, \nu_{3 M}$.
We consider the CP asymmetry due to the decay of the lightest heavy Majorana $\nu_{1 M}$.
The baryon asymmetry is related to the lepton asymmetry as

$$
Y_{\Delta B}=-\frac{8}{15}\left(\sum_{i=1,2,3} Y_{\Delta L}^{i}+Y_{\Delta L}^{0}\right)
$$

Figure: Contour plot of $Y_{\Delta B}$ in the region $5 \times 10^{-11}<Y_{\Delta B}<10^{-10}$ on the plane of the complex angle $\hat{\theta}$ for $\delta=4.3 \mathrm{rad}, \sigma=-1.5 \mathrm{rad}, \rho=-1 \mathrm{rad}$, $m_{H_{3}}=2.67 \times 10^{13} \mathrm{GeV},\langle\phi\rangle=23.6 m_{\mathrm{P}}, m_{\nu_{2 M}}=m_{\nu_{3 M}}=10^{3} m_{\nu_{1 M}}, m_{\nu_{1 M}}=10^{9}$ $\mathrm{GeV}, m_{\nu_{1}}=0.01 \mathrm{eV}$.

Non-thermal production

The heavy Majorana neutrinos are produced through the direct non-thermal decay of the heavy H_{3} Higgs boson.
The total CP asymmetry is the summation of all flavor CP asymmetry,

$$
\varepsilon_{\nu_{k M}}=\sum_{i}\left(\varepsilon_{\nu_{k M}}^{i(1)}+\varepsilon_{\nu_{k M}}^{i(2)}\right)=\frac{\sum_{j \neq k} B_{j} \operatorname{Im}\left[\left[\left(h^{\nu \dagger} h^{\nu}\right)_{k j}\right]^{2}\right]}{\left(h^{\nu \dagger} h^{\nu}\right)_{k k}}, \quad B_{j} \simeq-\frac{11}{160 \pi \sqrt{g_{j}}} .
$$

The lepton asymmetry is related with the CP asymmetry through

$$
Y_{\Delta L}=\frac{3}{2} \varepsilon_{\nu_{k M}} \times B r_{k} \times \frac{T_{R}}{m_{H_{3}}}, \quad T_{R}=\left(\frac{90}{\pi^{2} g^{*}}\right)^{\frac{1}{4}}\left(\Gamma_{H_{3}} m_{\mathrm{P}}\right)^{\frac{1}{2}}, g^{*}=106.75,
$$

$B r_{k}$ denotes the branching ratio of the decay channel $H_{3} \rightarrow \nu_{k M} \nu_{k M}$. Assumed that $m_{\nu_{1 M}} \ll m_{H_{3}}<m_{\nu_{2 M}} \sim m_{\nu_{3 M}}, m_{H_{3}}<m_{Z^{N}}$ and $\Gamma\left(H_{3} \rightarrow h h\right) \ll \Gamma\left(H_{3} \rightarrow \nu_{1 M} \nu_{1 M}\right)$ when $\lambda_{10 ; 11 ; 12}$ are negligibly small, therefore,

$$
Y_{\Delta L} \simeq \frac{3}{2} \varepsilon_{\nu_{1 M}} \times \frac{T_{R}}{m_{H_{3}}}
$$

Figure: Contour plot of $Y_{\Delta B}$ in the region ($5 \times 10^{-11}<Y_{\Delta B}<10^{-10}$) on the plane of the complex angle $\widehat{\theta}$ for $\delta=4.3 \mathrm{rad}, \sigma=-1.5 \mathrm{rad}, \rho=-1 \mathrm{rad}, m_{\nu_{1}}=0.01 \mathrm{eV}$, $m_{H_{3}}=2.67 \times 10^{13} \mathrm{GeV},\langle\phi\rangle=23.6 m_{\mathrm{P}}, m_{\nu_{2 M}}=m_{\nu_{3} M}=10^{14} \mathrm{GeV}$, $m_{\nu_{1 M}}=10^{11} \mathrm{GeV}$ (red) and $m_{\nu_{1 M}}=10^{9} \mathrm{GeV}$ (blue).

5. Summary

We have considered two versions of the 3-3-1 model:
\triangleright The minimal 3-3-1 model behaved as the simple 3-3-1 model with two scalar triplets η and χ has been reviewed. The original simple 3-3-1 model does not contain dark matter. By introducing an odd Higgs triplet (η^{\prime} or χ^{\prime}) under a Z_{2} symmetry while all other fields are even, the simple 3-3-1 model with the replication of η or of χ can provide the dark matter candidate.
\triangleright The 3-3-1 model with neutral fermion is extended to the 3-3-1-1 model in order to generate inflation as well as explain the baryon asymmetry of the Universe. The $U(1)_{N}$, where $N=\mathcal{B}-\mathcal{L}$ is considered as a gauged charge, is broken by the singlet ϕ at GUT scale. ϕ can play role of inflaton.
The model contains the heavy Majorana neutrinos, which can be produced in a thermal bath or by decay of the Higgs singlet H_{3}, real part of ϕ. Both thermal and non-thermal productions have been calculated. The baryon asymmetry is in agreement with experimental result in both cases with different choice of the complex angle $\widehat{\theta}$.

Thanks you for your attention!

