The 3-3-1 Models and Implication to Astroparticle Physics

Nguyen Thi Thuy

Yonsei University (based on Phys. Rev. D 91, 055023 (2015), and arXiv:1501.04385 [hep-ph])

Wonju, June 4-7, 2015

1 Motivation

- 2 The 3-3-1 Models
- **3** Investigation of Dark Matter in Minimal 3-3-1 Models
- **4** Inflation and Leptogenesis in the 3-3-1-1 Model

5 Summary

1. Motivation

Inflation

Inflation was suggested to solve the flatness and hoziron problems. The fundamental idea of inflation is that the Universe undergoes a period of acceleration expansion, defined as a period when $\ddot{a} > 0$, at early times. A plausible scenario for driving such an accelerated expansion is provided by scalar fields.

Matter-antimatter asymmetry

The baryon asymmetry of the Universe can be expressed as

$$Y_{\Delta B} \equiv \left. rac{n_B - n_{\overline{B}}}{s} \right|_0,$$

where n_B , $n_{\overline{B}}$ are the number densities of baryons and antibaryons, s is the entropy density, $s = g_*(2\pi^2/45)T^3$ with g_* is the number of degrees of freedom in the plasma, and T is the temperature.

From Big-Bang Nucleosynthesis (BBN) and Wilkinson Microwave Anisotropy Probe (WMAP),

$$Y^{\rm BBN}_{\Delta B} = (8.10 \pm 0.85) \times 10^{-11}, \quad Y^{\rm CMB}_{\Delta B} = (8.79 \pm 0.44) \times 10^{-11}.$$

All cosmological models agree that the Universe started with the same amount of baryon and anti-baryon

 \Rightarrow The baryon asymmetry must be generated dynamically.

Sakharov requires

- Baryon number violation
- ▷ C and CP violation
- > Out of equilibrium dynamics

The candidate scenario is Leptogenesis. Singlet and heavy Majorana neutrinos N_i are introduced to provide mass to the light neutrinos via a seesaw mechanism. These heavy neutrinos can decay into lighter particles and create a lepton number asymmetry, which can be converted into a baryon asymmetry,

$$Y_{\Delta B} = rac{C_{\mathrm{sph}}}{C_{\mathrm{sph}} - 1} Y_{\Delta L}.$$

Dark matter

Evidence for dark matter

$$rac{v_{
m rot}^2}{r} = rac{GM(r)}{r^2} \Rightarrow v_{
m rot} = \sqrt{rac{GM(r)}{r}},$$

where r is the distance of the tracer star from the galactic center and M(r) is the galactic mass enclosed within this distance.

DM should be non-baryonic and cold, electrically neutral, stable (the life time > the age of the Universe).

2. The $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ (3-3-1) Models

In general the fermion triplets in the 3-3-1 models are arranged as

$$\begin{split} \psi_{aL} &= (\nu_{aL}, e_{aL}, F_{aL})^T \sim (1, 3, X_{\psi_a}), \\ Q_{\alpha L} &= (d_{\alpha L}, -u_{\alpha L}, J_{\alpha L})^T \sim (3, 3^*, X_{Q_\alpha}), \\ Q_{3L} &= (u_{3L}, d_{3L}, J_{3L})^T \sim (3, 3, X_{Q_3}), \end{split}$$

where the index a = 1, 2, 3 and $\alpha = 1, 2$.

The electric charge operator is given by $Q = T_3 + \beta T_8 + XI$. How to define X charges?

1-The electric charge is conserved requiring

$$Q < \chi >= 0, \ Q < \eta >= 0, \ Q < \rho >= 0$$

2-The Yukawa Lagrangian needed to generate mass to all quarks is invariant under the $U(1)_X$

3-The anomaly condition $Tr[SU(3)_L]^2[U(1)_X] = 0$

4-The relations of X_{ψ_a} and the electric charge of leptonic particles are obtained by applying the electric charge operator on the lepton triplet.

The minimal 3-3-1 model: $F_{aL} = (e^c)_{aL}$, with $(e^c)_{aL} \equiv (e_{aR})^c$

$$q_{e_a} = -q_{e_a^c} \Rightarrow X_{\psi_a} = rac{1}{4} + rac{eta}{4\sqrt{3}}$$

All X charges of triplets and singlets can be expressed in a single parameter β . Using $q_{e_a} = -1$ then $\beta = -\sqrt{3}$. Therefore,

$$X_{\psi_a} = 0, \quad X_Q = -\frac{1}{3}, \quad X_{Q_3} = \frac{2}{3},$$

 $q_{u_a} = \frac{2}{3}, \quad q_{d_a} = -\frac{1}{3}, \quad q_{J_\alpha} = -\frac{4}{3}, \quad q_{J_3} = \frac{5}{3}.$

The 3-3-1 model with neutral fermions: $F_{aL} = (N^c)_{aL}$, with $(N_{aR})^c \equiv (N^c)_{aL}$ We get $\beta = -1/\sqrt{3}$, and

$$X_{\psi_a} = -\frac{1}{3}, \quad X_Q = 0, \quad X_{Q_3} = \frac{1}{3},$$

 $q_{u_a} = \frac{2}{3}, \quad q_{d_a} = -\frac{1}{3}, \quad q_{J_\alpha} = -\frac{1}{3}, \quad q_{J_3} = \frac{2}{3}.$

3. Investigation of Dark Matter in Minimal 3-3-1 Models

- \triangleright There is no dark matter candidate in the original 3-3-1 model. One might introduce a Z_2 symmetry so that one scalar triplet of the theory is odd, while all other fields are even under the Z_2 symmetry. The odd particles act as inert fields. Therefore, the lightest and neutral inert particle is stable and can be a dark matter candidate.
- ▷ The minimal 3-3-1 model originally works with three scalar triplets $\rho = (\rho_1^+, \rho_2^0, \rho_3^{++}), \ \eta = (\eta_1^0, \eta_2^-, \eta_3^+), \ \chi = (\chi_1^-, \chi_2^{--}, \chi_3^0).$
- ▷ In order to enrich the inert scalar sector, one can consider the reduced 3-3-1 model by excluding η , or the simple 3-3-1 model by excluding ρ . The reduced 3-3-1 model gives large flavor-changing neutral currents as well as large ρ parameter.
- \triangleright The simple 3-3-1 model with the replication of η or of χ , which are additional inert scalars, can provide realistic dark matter candidates.

The simple 3-3-1 model

The model works well with two scalar triplets as

$$\eta = \begin{pmatrix} \frac{1}{\sqrt{2}}(u+S_1+iA_1) \\ \eta_2^- \\ \eta_3^+ \end{pmatrix} \sim (1,3,0),$$

$$\chi = \begin{pmatrix} \chi_1^- \\ \chi_2^{--} \\ \frac{1}{\sqrt{2}}(\omega+S_3+iA_3) \end{pmatrix} \sim (1,3,-1).$$

The scalar potential is given by

$$\begin{split} V_{\text{simple}} &= \mu_1^2 \eta^{\dagger} \eta + \mu_2^2 \chi^{\dagger} \chi + \lambda_1 (\eta^{\dagger} \eta)^2 + \lambda_2 (\chi^{\dagger} \chi)^2 \\ &+ \lambda_3 (\eta^{\dagger} \eta) (\chi^{\dagger} \chi) + \lambda_4 (\eta^{\dagger} \chi) (\chi^{\dagger} \eta), \end{split}$$

where $\mu_{1,2}$ have dimension of mass, while $\lambda_{1,2,3,4}$ are dimensionless.

The Higgs sector contains

+ eight Goldstone bosons $G_Z \equiv A_1$, $G_{Z'} \equiv A_3$, $G_W^{\pm} \equiv \eta_2^{\pm}$, $G_Y^{\pm\pm} \equiv \chi_2^{\pm\pm}$ and $G_X^{\pm} \equiv c_{\theta}\chi_1^{\pm} - s_{\theta}\eta_3^{\pm} \simeq \chi_1^{\pm}$ ($t_{\theta} = \frac{u}{\omega} \to 0$ since $u \ll \omega$) + four massive scalars

$$\begin{split} h &\simeq S_1, \qquad m_h^2 \simeq \frac{4\lambda_1\lambda_2 - \lambda_3^2}{2\lambda_2}u^2, \\ H &\simeq S_3, \qquad m_H^2 \simeq 2\lambda_2\omega^2, \\ H^{\pm} &\simeq \eta_3^{\pm}, \qquad m_{H^{\pm}}^2 \simeq \frac{\lambda_4}{2}\omega^2. \end{split}$$

The gauge boson masses arise from the Lagrangian

$$\sum_{\Phi=\eta,\chi} (D_\mu \langle \Phi
angle)^\dagger (D^\mu \langle \Phi
angle),$$

where the covariant derivative is defined as

$$D_{\mu} = \partial_{\mu} + ig_s t_i G_{i\mu} + ig T_i A_{i\mu} + ig_X X B_{\mu}.$$

The gauge bosons with their masses are respectively given as

$$\begin{split} W^{\pm} &\equiv \frac{A_1 \mp iA_2}{\sqrt{2}}, \quad m_W^2 = \frac{g^2}{4}u^2, \\ X^{\mp} &\equiv \frac{A_4 \mp iA_5}{\sqrt{2}}, \quad m_X^2 = \frac{g^2}{4}(\omega^2 + u^2), \\ Y^{\mp\mp} &\equiv \frac{A_6 \mp iA_7}{\sqrt{2}}, \quad m_Y^2 = \frac{g^2}{4}\omega^2, \end{split}$$

$$\begin{split} A &= s_W A_3 + c_W \left(-\sqrt{3} t_W A_8 + \sqrt{1 - 3t_W^2} B \right), \quad m_A = 0, \\ Z_1 &\simeq c_W A_3 - s_W \left(-\sqrt{3} t_W A_8 + \sqrt{1 - 3t_W^2} B \right), \quad m_{Z_1}^2 \simeq \frac{g^2}{4c_W^2} u^2, \\ Z_2 &\simeq \sqrt{1 - 3t_W^2} A_8 + \sqrt{3} t_W B, \quad m_{Z_2}^2 \simeq \frac{g^2 c_W^2}{3(1 - 4s_W^2)} \omega^2, \end{split}$$

where $s_W = e/g = t/\sqrt{1+4t^2}$, with $t = g_X/g$.

The Yukawa Lagrangian is given by

$$\mathcal{L}_{Y} = h_{33}^{J} \bar{Q}_{3L} \chi J_{3R} + h_{\alpha\beta}^{J} \bar{Q}_{\alpha L} \chi^{*} J_{\beta R} + h_{3a}^{u} \bar{Q}_{3L} \eta u_{aR} + \frac{h_{\alpha a}^{u}}{\Lambda} \bar{Q}_{\alpha L} \eta \chi u_{aR} + h_{\alpha a}^{d} \bar{Q}_{\alpha L} \eta^{*} d_{aR} + \frac{h_{3a}^{d}}{\Lambda} \bar{Q}_{3L} \eta^{*} \chi^{*} d_{aR} + h_{ab}^{e} \bar{\psi}_{aL}^{c} \psi_{bL} \eta + \frac{h_{ab}^{\prime e}}{\Lambda^{2}} (\bar{\psi}_{aL}^{c} \eta \chi) (\psi_{bL} \chi^{*}) + \frac{s_{ab}^{\nu}}{\Lambda} (\bar{\psi}_{aL}^{c} \eta^{*}) (\psi_{bL} \eta^{*}) + \text{H.c.},$$

where the $\Lambda \sim \omega$.

The simple 3-3-1 model with η replication (called η' -model for shortcut)

An extra scalar triplet that replicates η is defined as

$$\eta' = \begin{pmatrix} \frac{1}{\sqrt{2}}(H'_1 + iA'_1) \\ \eta'^-_2 \\ \eta'^+_3 \end{pmatrix} \sim (1, 3, 0).$$

The η' and η have the same gauge quantum numbers but η' is assigned as an odd field under the Z_2 , $\eta' \to -\eta'$, so $<\eta' >= 0$. The scalar potential includes the $V_{\rm simple}$ and the terms contained η' ,

$$\begin{split} \mathcal{V}_{\eta'} &= \mu_{\eta'}^2 \eta'^{\dagger} \eta' + x_1 (\eta'^{\dagger} \eta')^2 + x_2 (\eta^{\dagger} \eta) (\eta'^{\dagger} \eta') + x_3 (\chi^{\dagger} \chi) (\eta'^{\dagger} \eta') \\ &+ x_4 (\eta^{\dagger} \eta') (\eta'^{\dagger} \eta) + x_5 (\chi^{\dagger} \eta') (\eta'^{\dagger} \chi) + \frac{1}{2} [x_6 (\eta'^{\dagger} \eta)^2 + H.c.]. \end{split}$$

Here, $\mu_{\eta'}$ has mass dimension, while x_i (i = 1, 2, 3, ..., 6) are dimensionless.

The states H'_1 , A'_1 , $\eta'^{\pm}_2 \equiv H'^{\pm}_2$ and $\eta'^{\pm}_3 \equiv H'^{\pm}_3$ by themselves are physically inert particles with the corresponding masses as follows:

$$\begin{split} m_{H_1'}^2 &= M_{\eta'}^2 + \frac{1}{2}(x_4 + x_6)u^2, \quad m_{A_1'}^2 = M_{\eta'}^2 + \frac{1}{2}(x_4 - x_6)u^2, \\ m_{H_2^{\pm}}^2 &= M_{\eta'}^2, \quad m_{H_3^{\pm}}^2 = M_{\eta'}^2 + \frac{1}{2}x_5\omega^2, \end{split}$$

where $M_{\eta'}^2 \equiv \mu_{\eta'}^2 + \frac{1}{2}x_2u^2 + \frac{1}{2}x_3w^2$. If H_1' (or A_1') is the lightest inert particle (LIP), it can be the dark matter candidate.

Due to the Z_2 symmetry, the inert scalars interact only with normal scalars and gauge bosons, not with fermions.

The interactions of the inert scalars with gauge bosons are given in

$$\begin{array}{lll} \mathcal{L}^{\mathrm{triple}}_{\mathrm{gauge}-\eta'} &=& -ig[\eta'^{\dagger}(T_{i}A_{i\mu})\partial^{\mu}\eta'] + \mathrm{H.c.}, \\ \mathcal{L}^{\mathrm{quartic}}_{\mathrm{gauge}-\eta'} &=& g^{2}[\eta'^{\dagger}(T_{i}A_{i\mu})^{2}\eta']. \end{array}$$

The simple 3-3-1 model with χ replication

(called χ' -model for shortcut) The χ replication takes the form

$$\chi' = \begin{pmatrix} \chi_1'^- \\ \chi_2'^{--} \\ \frac{1}{\sqrt{2}}(H_3' + iA_3') \end{pmatrix} \sim (1, 3, -1).$$

The χ' is assigned odd under the Z_2 symmetry that requires $\langle \chi' \rangle = 0$. The additional potential due to the χ' field is given as

$$V_{\chi'} = \mu_{\chi'}^2 \chi'^{\dagger} \chi' + y_1 (\chi'^{\dagger} \chi')^2 + y_2 (\eta^{\dagger} \eta) (\chi'^{\dagger} \chi') + y_3 (\chi^{\dagger} \chi) (\chi'^{\dagger} \chi') + y_4 (\eta^{\dagger} \chi') (\chi'^{\dagger} \eta) + y_5 (\chi^{\dagger} \chi') (\chi'^{\dagger} \chi) + \frac{1}{2} [y_6 (\chi'^{\dagger} \chi)^2 + \text{H.c.}].$$

$$\begin{split} m_{\mathcal{H}'_3}^2 &= M_{\chi'}^2 + \frac{1}{2}(y_5 + y_6)\omega^2, \quad m_{\mathcal{A}'_3}^2 = M_{\chi'}^2 + \frac{1}{2}(y_5 - y_6)\omega^2, \\ m_{\mathcal{H}'_2^{\pm\pm}}^2 &= M_{\chi'}^2, \quad m_{\mathcal{H}'_1^{\pm}}^2 = M_{\chi'}^2 + \frac{1}{2}y_4u^2, \end{split}$$

where $M_{\chi'}^2 \equiv \mu_{\chi'}^2 + \frac{1}{2}y_2u^2 + \frac{1}{2}y_3\omega^2$. If H'_3 (or A'_3) is the LIP, it can be the dark matter candidate.

Dark matter

The coupling λ_1 is constrained by the mass of the SM Higgs, $m_h = 125$ GeV. Fix $\lambda_2 = \lambda_3 = \lambda_4 = 0.1$. In η' -model:

The inert particles are $H'_1, A'_1, H'^{\pm}_2, H'^{\pm}_3$. With the condition $x_6 < Min\{0, -x_4, (w/u)^2 x_5 - x_4\}, H'_1$ is the LIP $\Rightarrow H'_1$ is the DM candidate.

Fix

$$x_1 = 0.01, \ x_2 = 0.03, \ x_3 = 0.01, \ x_4 = 0.07, \ x_5 = 0.08, \ x_6 = -0.09.$$

 $m_{H_1'}$ depends on $\mu_{\eta'}$ and ω . In χ' -model: The inert particles are $H_1^{'\pm}$, $H_2^{'\pm\pm}$, H_3' , A_3' . If we assume that $y_6 < Min\{0, -y_5, (u/w)^2 y_4 - y_5\}$, H_3' is the LIP $\Rightarrow H_3'$ is the DM candidate. Fix

 $y_1=0.01,\ y_2=0.04,\ y_3=0.058,\ y_4=0.01,\ y_5=0.05,\ y_6=-0.06.$ $m_{H_3'}$ depends on $\mu_{\chi'}$ and $\omega.$ We figure out the relic density as a function of DM mass for $\omega = 3$ TeV (red), $\omega = 4$ TeV (green), and $\omega = 5$ TeV (blue). (The horizontal line is the WMAP limit on the relic density.)

 η' -model

 χ' -model

Motivation of the 3-3-1-1 model

- ▷ In the 3-3-1 model the lepton number of three components in a triplet are different, so the lepton number operator does not commute with the generators of the unitary group $SU(3)_L$. So, one constructed lepton number operator as the combination of T_3 , T_8 , and charged \mathcal{L} with the relation $L = \alpha' T_3 + \beta' T_8 + \mathcal{L}I$. L is considered as a global symmetry.
- ▷ Since T₃, T₈ are gauged charges of the SU(3)_L symmetry, L, L should be gauged or local generators.
 ⇒ We extend the gauge group SU(3)_C ⊗ SU(3)_L ⊗ U(1)_X to SU(3)_C ⊗ SU(3)_L ⊗ U(1)_X ⊗ U(1)_N (3-3-1-1), where N = B L, B = BI so that the anomalies associated with U(1)_N and with the usual 3 3 1 symmetry obviously vanish.

- ▷ The Higgs scalar breaks the $U(1)_N$ symmetry can play a role of inflaton.
- ▷ The right-handed neutrinos not only solve the small masses of the observed neutrinos through a type I seesaw mechanism but also can be a source for the CP asymmetry.
- ▷ We apply the extension to the version with neutral fermions because there are some odd particles under the parity $P = (-1)^{3(B-L)+2s}$.

Review particles in the 3-3-1-1 model

Particle content

The fermion content of the 3-3-1-1 model which is anomaly free is given as

$$\begin{split} \psi_{aL} &= \begin{pmatrix} \nu_{aL} \\ e_{aL} \\ (N_{aR})^c \end{pmatrix} \sim (1, 3, -1/3, -2/3), \\ \nu_{aR} &\sim (1, 1, 0, -1), \quad e_{aR} \sim (1, 1, -1, -1), \\ Q_{\alpha L} &= \begin{pmatrix} d_{\alpha L} \\ -u_{\alpha L} \\ D_{\alpha L} \end{pmatrix} \sim (3, 3^*, 0, 0), \quad Q_{3L} = \begin{pmatrix} u_{3L} \\ d_{3L} \\ U_L \end{pmatrix} \sim (3, 3, 1/3, 2/3), \\ u_{aR} &\sim (3, 1, 2/3, 1/3), \quad d_{aR} \sim (3, 1, -1/3, 1/3), \\ U_R &\sim (3, 1, 2/3, 4/3), \quad D_{\alpha R} \sim (3, 1, -1/3, -2/3), \end{split}$$

where the quantum numbers located in the parentheses are defined upon the gauge symmetries $(SU(3)_C, SU(3)_L, U(1)_X, U(1)_N)$, respectively. The family indices are a = 1, 2, 3 and $\alpha = 1, 2$. The N_{aR} are the neutral leptons and U, D_{α} are the exotic quarks. To break the gauge symmetry and generate the masses in a correct way, the 3-3-1-1 model needs the following scalar multiplets with their VEVs conserving Q and P:

$$\begin{split} \rho &= (\rho_1^+, \rho_2^0, \rho_3^+)^T \sim (1, 3, 2/3, 1/3), \quad \langle \rho \rangle = \frac{1}{\sqrt{2}} (0, \nu, 0)^T, \\ \eta &= (\eta_1^0, \eta_2^-, \eta_3^0)^T \sim (1, 3, -1/3, 1/3), \quad \langle \eta \rangle = \frac{1}{\sqrt{2}} (u, 0, 0)^T, \\ \chi &= (\chi_1^0, \chi_2^-, \chi_3^0)^T \sim (1, 3, -1/3, -2/3), \quad \langle \chi \rangle = \frac{1}{\sqrt{2}} (0, 0, \omega)^T, \\ \phi &\sim (1, 1, 0, 2), \quad \langle \phi \rangle = \frac{1}{\sqrt{2}} \Lambda. \end{split}$$

The gauge group $SU(3)_L \otimes U(1)_X \otimes U(1)_N$ is broken:

 $SU(3)_L \otimes U(1)_X \otimes U(1)_N \to U(1)_Q \otimes U(1)_{B-L}.$

The Yukawa interactions and scalar potential are obtained as

$$\begin{aligned} \mathcal{L}_{\text{Yukawa}} &= h^{e}_{ab} \bar{\psi}_{aL} \rho e_{bR} + h^{\nu}_{ab} \bar{\psi}_{aL} \eta \nu_{bR} + h^{\prime \nu}_{ab} \bar{\nu}^{c}_{aR} \nu_{bR} \phi + h^{U} \bar{Q}_{3L} \chi U_{R} \\ &+ h^{D}_{\alpha\beta} \bar{Q}_{\alpha L} \chi^{*} D_{\beta R} + h^{u}_{a} \bar{Q}_{3L} \eta u_{aR} + h^{d}_{a} \bar{Q}_{3L} \rho d_{aR} \\ &+ h^{d}_{\alpha a} \bar{Q}_{\alpha L} \eta^{*} d_{aR} + h^{u}_{\alpha a} \bar{Q}_{\alpha L} \rho^{*} u_{aR} + H.c, \end{aligned}$$

$$V(\rho,\eta,\chi,\phi) = \mu_1^2 \rho^{\dagger} \rho + \mu_2^2 \chi^{\dagger} \chi + \mu_3^2 \eta^{\dagger} \eta + \lambda_1 (\rho^{\dagger} \rho)^2 + \lambda_2 (\chi^{\dagger} \chi)^2 + \lambda_3 (\eta^{\dagger} \eta)^2 + \lambda_4 (\rho^{\dagger} \rho) (\chi^{\dagger} \chi) + \lambda_5 (\rho^{\dagger} \rho) (\eta^{\dagger} \eta) + \lambda_6 (\chi^{\dagger} \chi) (\eta^{\dagger} \eta) + \lambda_7 (\rho^{\dagger} \chi) (\chi^{\dagger} \rho) + \lambda_8 (\rho^{\dagger} \eta) (\eta^{\dagger} \rho) + \lambda_9 (\chi^{\dagger} \eta) (\eta^{\dagger} \chi) + (f \epsilon^{mnp} \eta_m \rho_n \chi_p + H.c.) + \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + \lambda_{10} (\phi^{\dagger} \phi) (\rho^{\dagger} \rho) + \lambda_{11} (\phi^{\dagger} \phi) (\chi^{\dagger} \chi) + \lambda_{12} (\phi^{\dagger} \phi) (\eta^{\dagger} \eta).$$

Scalar sector

We expand the neutral scalars around their VEVs such as

$$\rho = \begin{pmatrix} \rho_1^+ \\ \frac{1}{\sqrt{2}}(v+S_2+iA_2) \\ \rho_3^+ \end{pmatrix}; \quad \eta = \begin{pmatrix} \frac{1}{\sqrt{2}}(u+S_1+iA_1) \\ \eta_2^- \\ \frac{1}{\sqrt{2}}(S_3'+iA_3') \end{pmatrix}; \\
\chi = \begin{pmatrix} \frac{1}{\sqrt{2}}(S_1'+iA_1') \\ \chi_2^- \\ \frac{1}{\sqrt{2}}(\omega+S_3+iA_3) \end{pmatrix}; \quad \phi \sim \frac{1}{\sqrt{2}}(\Lambda+S_4+iA_4).$$

We assume that f, ω are the same order and $\Lambda \gg \omega \gg u, v$. The physical fields with respective masses can be written as:

For charged scalars,

$$\begin{aligned} & H_4^- = \frac{v\chi_2^- + \omega\rho_3^-}{\sqrt{v^2 + \omega^2}}, \qquad H_5^- = \frac{v\eta_2^- + u\rho_1^-}{\sqrt{u^2 + v^2}}, \\ & G_Y^- = \frac{\omega\chi_2^- - v\rho_3^-}{\sqrt{v^2 + \omega^2}}, \\ & G_W^- = \frac{u\eta_2^- - v\rho_1^-}{\sqrt{u^2 + v^2}}. \end{aligned}$$

The pseudoscalar A_4 is massless.

$$A = \frac{u^{-1}A_1 + v^{-1}A_2 + \omega^{-1}A_3}{\sqrt{u^{-2} + v^{-2} + \omega^{-2}}}.$$

$$G_Z = rac{-uA_1 + vA_2}{\sqrt{u^2 + v^2}}, \quad G_{Z'} = rac{-\omega^{-1}(u^{-1}A_1 + v^{-1}A_2) + (u^{-2} + v^{-2})A_3}{\sqrt{(u^{-2} + v^{-2} + \omega^{-2})(u^{-2} + v^{-2})}},$$

$$G_X = \frac{\omega \chi_1 - u \eta_3^*}{\sqrt{u^2 + \omega^2}}, \quad H' = \frac{u \chi_1^* + \omega \eta_3}{\sqrt{u^2 + \omega^2}}.$$

For neutral scalars,

$$H = \frac{uS_1 + vS_2}{\sqrt{u^2 + v^2}}, \quad H_1 = \frac{-vS_1 + uS_2}{\sqrt{u^2 + v^2}}, \quad H_2 = S_3, \quad H_3 \simeq S_4.$$

H is identified as the SM Higgs boson.

Gauge sector

$$\begin{split} W_{\mu}^{\pm} &= \frac{A_{1\mu} \mp iA_{2\mu}}{\sqrt{2}}, \ Y_{\mu}^{\mp} = \frac{A_{6\mu} \mp iA_{7\mu}}{\sqrt{2}}, \ X_{\mu}^{0} = \frac{A_{4\mu} - iA_{5\mu}}{\sqrt{2}}, \\ M_{W}^{2} &= \frac{1}{4}g^{2}(u^{2} + v^{2}), \ M_{Y}^{2} = \frac{1}{4}g^{2}(v^{2} + \omega^{2}), \ M_{X}^{2} = \frac{1}{4}g^{2}(u^{2} + \omega^{2}). \\ M_{\gamma}^{2} &= 0(\text{exact!}), \ A_{\mu} = \frac{\sqrt{3}}{\sqrt{3 + 4t_{1}^{2}}} \left(t_{1}A_{3\mu} - \frac{t_{1}}{\sqrt{3}}A_{8\mu} + B_{\mu} \right). \\ Z_{\mu}^{N} &\simeq C_{\mu}, \ m_{Z^{N}}^{2} \simeq 4g^{2}t_{2}^{2}\Lambda^{2}, \\ Z_{\mu}^{1} &\simeq \frac{\sqrt{3 + t_{1}^{2}}}{\sqrt{3 + 4t_{1}^{2}}} A_{3\mu} + \frac{t_{1}(\sqrt{3}t_{1}A_{8\mu} - 3B_{\mu})}{\sqrt{3 + t_{1}^{2}}\sqrt{3 + 4t_{1}^{2}}}, \ m_{Z^{1}}^{2} \simeq \frac{g^{2}(u^{2} + v^{2})}{4c_{W}^{2}}, \\ Z_{\mu}^{2} &\simeq \frac{\sqrt{3}}{\sqrt{3 + t_{1}^{2}}} A_{8\mu} + \frac{t_{1}}{\sqrt{3 + t_{1}^{2}}} B_{\mu}, \ m_{Z^{2}}^{2} \simeq \frac{g^{2}c_{W}^{2}\omega^{2}}{(3 - 4s_{W}^{2})}. \end{split}$$

Note that we have set $t_1 \equiv g_X/g$, $t_2 \equiv g_N/g$.

Fermion sector

From the \mathcal{L}_{Yukawa} , we obtain the Dirac masses for all quarks and leptons. The right-handed neutrinos get Majorana masses in the form $-\frac{1}{2}\bar{\nu}_{R}^{c}m_{\nu}^{M}\nu_{R} + \text{H.c.}$, where

$$[m_{\nu}^{M}]_{ab} = -\sqrt{2}h_{ab}^{\prime\nu}\Lambda.$$

The observed neutrinos ($\sim \nu_L$) naturally get small masses via a type I seesaw mechanism,

$$m_{\nu}^{\mathrm{eff}} = -m_{\nu}^{D}(m_{\nu}^{M})^{-1}(m_{\nu}^{D})^{T} \sim rac{(h^{
u})^{2}}{h^{\prime
u}}rac{u^{2}}{\Lambda}.$$

The masses of the neutral fermions N_R can be generated via an effective operator invariant under the 3-3-1-1 symmetry

$$\frac{\lambda_{ab}}{M}\bar{\psi}_{aL}^{c}\psi_{bL}(\chi\chi)^{*} + \text{H.c.},$$
$$[m_{N_{R}}]_{ab} = -\lambda_{ab}\frac{\omega^{2}}{M}.$$

Assume that $M \sim \omega$ then $m_{N_R} \sim \omega$.

In brief,

▷ After spontaneous symmetry breaking, there are

- 9 goldstone bosons $A_4, G_Z, G_{Z'}, G_X, G_X^*, G_Y^{\pm}, G_W^{\pm}$,
- 9 massive gauge bosons Z^N, Z¹, Z², X⁰, X^{0*}, Y[±], W[±], and one massless γ,
- 4 neutral Higgs bosons H, H₁, H₂, H₃, one massive pseudoscalar A, complex Higgs H', H'*, 4 charged scalars H[±]₄, H[±]₅
- ▷ The mass of H_3 , Z^N , ν_R is proportional to Λ. The mass of other new massive particles, A, H_1 , H_2 , H_4^{\pm} , H_5^{\pm} , H', H'^* , Z_{μ}^2 , X_{μ}^0 , X_{μ}^{0*} , Y_{μ}^{\pm} , U, D_{α} , N_R , is proportional to ω .
- ▷ In this model, $L(G_X, H'^*, H_4^-, G_Y^-, X^0, Y^-) = 1$ while the remaining Higgs and gauge bosons have zero lepton number.
- \triangleright The Majorana masses of the right-handed neutrinos violate L with ± 2 units \rightarrow The decay of Majorana right-handed neutrinos can generate the lepton asymmetry.

Generation of inflation in the 3-3-1-1 model

The scalar singlet ϕ is completely breaking $U(1)_N$. We expect that the VEV of ϕ is very high and consider the singlet scalar ϕ plays the role of inflaton field.

We identify the inflaton with the real part of the B - L Higgs field, $\Phi = \sqrt{2}\mathcal{R}[\phi]$. In the leading- log approximation, we obtain

$$V(\Phi) = V_{ ext{tree}} + V_{ ext{eff}} \simeq rac{\lambda}{4} (\Phi^4 + a' \Phi^4 \ln rac{\Phi}{\Delta}),$$

where

$$a' = rac{a+72\lambda^2}{16\pi^2\lambda}, \quad a = f(h_{ii}'^{
u}, g_N, \lambda_{10,11,12}).$$

We can express the number of e-folds N, the spectral index n_s , the tensor to scalar ratio r (a canonical measure of gravity wave from inflation) and the running index α in terms of a', Δ, Φ . Experiments require $n_s \in (0.94, 0.98), r \in (0.001, 0.15), \alpha \in (-0.0314, 0.0046)$. We fix N = 60.

$$V'(\Phi) = 0 \Rightarrow <\Phi >\simeq 23.6m_{
m P},$$

 $m_{\Phi} = \sqrt{V''(\Phi)} |_{\Phi=<\Phi>} \simeq 2.67 \times 10^{13} {
m GeV}.$

Leptogenesis

CP asymmetry

The Majorana neutrinos are defined as

$$\nu_{iM} = \nu_{iR} + \nu_{iR}^{c},$$

$$\nu_{iE} = \nu_{iL} + \nu_{iL}^{c},$$

$$N_{i} = N_{iR} + N_{iR}^{c},$$

 $\bar{e}_i \nu_{kM} H_5^-$, $\bar{N}_i H' \nu_{kM}$ interactions violate the lepton number $\implies \nu_{kM}$ can generate lepton asymmetry.

$$\begin{split} \varepsilon_{\nu_{kM}}^{i(1)} &= \frac{\Gamma(\nu_{kM} \to e_i + H_5^+) - \Gamma(\nu_{kM} \to \overline{e}_i + H_5^-)}{2\Gamma_{\nu_{kM}}} \\ &\simeq \frac{1}{8\pi C_0} \Big[\text{gauge transportation} \Big] s_{\beta}^2 \sum_{l} \text{Im}[h_{lk}^{\nu*} h_{lk}^{\nu}] \\ &+ \frac{s_{\beta}^4}{8\pi C_0} \sum_{j} \sqrt{g_j} \Big[1 - (1 + g_j) \log[1 + 1/g_j] + (1 - g_j)^{-1} \Big] \text{Im}[(h^{\nu\dagger} h^{\nu})_{kj} h_{lk}^{\nu*} h_{lj}^{\nu}], \end{split}$$

where $\Gamma_{\nu_{kM}}$ is the total decay rate of ν_{kM} at tree level,

$$\begin{split} g_{j} &= \frac{m_{\nu_{jM}}^{2}}{m_{\nu_{kM}}^{2}}, \qquad C_{0} = (2 + s_{\beta}^{2}) \sum_{i} |h_{ik}^{\nu}|^{2} = (2 + s_{\beta}^{2}) (h^{\nu^{\dagger}} h^{\nu})_{kk}, \qquad t_{\beta} = \nu/u. \\ \varepsilon_{\nu_{kM}}^{i(2)} &= \frac{\Gamma(\nu_{kM} \to N_{i} + H'^{*}) - \Gamma(\nu_{kM} \to N_{i} + H')}{2\Gamma_{\nu_{kM}}} \\ &\simeq \frac{1}{8\pi C_{0}} \Big[\text{gauge transportation} \Big] \sum_{i} \text{Im}[h_{ik}^{\nu*} h_{ik}^{\nu}] \\ &+ \frac{1}{8\pi C_{0}} \sum_{j} \sqrt{g_{j}} \Big[1 - (1 + g_{j}) log [1 + 1/g_{j}] + s_{\beta}^{2} (1 - g_{j})^{-1} \Big] \text{Im}[(h^{\nu^{\dagger}} h^{\nu})_{kj} h_{ik}^{\nu*} h_{ij}^{\nu}] \end{split}$$

Yukawa coupling matrix

 h^{ν} matrix is required to be complex.

If we ignore

-the mixing between the charged lepton -the mixing between heavy Majorana neutrinos, the most general h^{ν} matrix is given by

$$h^{
u} = rac{\sqrt{2}}{u} Diag(\sqrt{m_{
u_{1M}}}, \sqrt{m_{
u_{2M}}}, \sqrt{m_{
u_{3M}}}).R.Diag(\sqrt{m_{
u_1}}, \sqrt{m_{
u_2}}, \sqrt{m_{
u_3}}).U^{\dagger},$$

where R is an orthogonal matrix expressed in terms of arbitrary complex angles $\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3$ as following

$$R = \begin{pmatrix} \widehat{c}_2 \widehat{c}_3 & -\widehat{c}_1 \widehat{s}_3 - \widehat{s}_1 \widehat{s}_2 \widehat{c}_3 & \widehat{s}_1 \widehat{s}_3 - \widehat{c}_1 \widehat{s}_2 \widehat{c}_3 \\ \widehat{c}_2 \widehat{s}_3 & \widehat{c}_1 \widehat{c}_3 - \widehat{s}_1 \widehat{s}_2 \widehat{s}_3 & -\widehat{s}_1 \widehat{c}_3 - \widehat{c}_1 \widehat{s}_2 \widehat{s}_3 \\ \widehat{s}_2 & \widehat{s}_1 \widehat{c}_2 & \widehat{c}_1 \widehat{c}_2 \end{pmatrix},$$

where $\hat{c}_i = \cos \hat{\theta}_i, \hat{s}_i = \sin \hat{\theta}_i, i = 1, 2, 3.$

$$\begin{split} & U = U_{\rm PMNS}.P, \\ & U_{\rm PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}, \\ & P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & e^{i\rho} \end{pmatrix}, \end{split}$$

where $c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$,

 $\sin^2 \theta_{23} \simeq 0.466, \quad \sin^2 \theta_{12} \simeq 0.312, \quad \sin^2 \theta_{13} \simeq 0.016.$

$$\Delta m_{\nu_{12}}^2 = m_{\nu_2}^2 - m_{\nu_1}^2 = 7.53 \times 10^{-5} \mathrm{eV}^2, \ \Delta m_{\nu_{23}}^2 = m_{\nu_3}^2 - m_{\nu_2}^2 = 2.44 \times 10^{-3} \mathrm{eV}^2$$

 δ is unknown CP violating Dirac phase. σ, ρ are the CP violating Majorana phases. h_{ab}^{ν} are function of the phase δ, ρ, σ , the heavy majorana neutrinos masses and the complex angles. For simplicity, we assume $\hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_3 \equiv \hat{\theta}$.

Thermal production

In the thermal scenario, the heavy Majorana neutrinos are produced in a thermal bath.

For the channel $\nu_{kM} \rightarrow e_i H_5^+$, $\overline{e}_i H_5^-$ the CP asymmetry depends on flavor because $L_i(e_i) = 1$. However, since $L(N_i) = 0$, L(H') = -1, the CP asymmetry due to the decay $\nu_{kM} \rightarrow N_i H'^*$, $N_i H'$ is considered flavor independent.

Assume that $\nu_{1M} \ll \nu_{2M}, \nu_{3M}$.

We consider the CP asymmetry due to the decay of the lightest heavy Majorana $\nu_{1M}.$

The baryon asymmetry is related to the lepton asymmetry as

$$Y_{\Delta B} = -\frac{8}{15} \Big(\sum_{i=1,2,3} Y^i_{\Delta L} + Y^0_{\Delta L} \Big).$$

Figure: Contour plot of $Y_{\Delta B}$ in the region $5 \times 10^{-11} < Y_{\Delta B} < 10^{-10}$ on the plane of the complex angle $\hat{\theta}$ for $\delta = 4.3$ rad, $\sigma = -1.5$ rad, $\rho = -1$ rad, $m_{H_3} = 2.67 \times 10^{13} \text{ GeV}, <\phi >= 23.6 m_{\text{P}}, m_{\nu_{2M}} = m_{\nu_{3M}} = 10^3 m_{\nu_{1M}}, m_{\nu_{1M}} = 10^9 \text{ GeV}, m_{\nu_1} = 0.01 \text{ eV}.$

Non-thermal production

The heavy Majorana neutrinos are produced through the direct non-thermal decay of the heavy H_3 Higgs boson. The total CP asymmetry is the summation of all flavor CP asymmetry,

$$\varepsilon_{\nu_{kM}} = \sum_{i} (\varepsilon_{\nu_{kM}}^{i(1)} + \varepsilon_{\nu_{kM}}^{i(2)}) = \frac{\sum_{j \neq k} B_j \mathrm{Im}[[(h^{\nu^{\dagger}} h^{\nu})_{kj}]^2]}{(h^{\nu^{\dagger}} h^{\nu})_{kk}}, \quad B_j \simeq -\frac{11}{160\pi\sqrt{g_j}}.$$

The lepton asymmetry is related with the CP asymmetry through

$$Y_{\Delta L} = \frac{3}{2} \varepsilon_{\nu_{kM}} \times Br_k \times \frac{T_R}{m_{H_3}}, \quad T_R = \left(\frac{90}{\pi^2 g^*}\right)^{\frac{1}{4}} (\Gamma_{H_3} m_{\rm P})^{\frac{1}{2}}, \ g^* = 106.75,$$

 Br_k denotes the branching ratio of the decay channel $H_3 \rightarrow \nu_{kM}\nu_{kM}$. Assumed that $m_{\nu_{1M}} \ll m_{H_3} < m_{\nu_{2M}} \sim m_{\nu_{3M}}$, $m_{H_3} < m_{Z^N}$ and $\Gamma(H_3 \rightarrow hh) \ll \Gamma(H_3 \rightarrow \nu_{1M}\nu_{1M})$ when $\lambda_{10;11;12}$ are negligibly small, therefore,

$$Y_{\Delta L} \simeq rac{3}{2} arepsilon_{
u_{1M}} imes rac{T_R}{m_{H_3}}.$$

Figure: Contour plot of $Y_{\Delta B}$ in the region $(5 \times 10^{-11} < Y_{\Delta B} < 10^{-10})$ on the plane of the complex angle $\hat{\theta}$ for δ =4.3 rad, σ =-1.5 rad, ρ =-1 rad, m_{ν_1} =0.01 eV, $m_{H_3} = 2.67 \times 10^{13}$ GeV, $<\phi>= 23.6m_{\rm P}$, $m_{\nu_{2M}} = m_{\nu_{3M}} = 10^{14}$ GeV, $m_{\nu_{1M}} = 10^{11}$ GeV (red) and $m_{\nu_{1M}} = 10^9$ GeV (blue).

5. Summary

We have considered two versions of the 3-3-1 model:

- ▷ **The minimal 3-3-1 model** behaved as the simple 3-3-1 model with two scalar triplets η and χ has been reviewed. The original simple 3-3-1 model does not contain dark matter. By introducing an odd Higgs triplet (η' or χ') under a Z_2 symmetry while all other fields are even, the simple 3-3-1 model with the replication of η or of χ can provide the dark matter candidate.
- ▷ **The 3-3-1 model with neutral fermion** is extended to the 3-3-1-1 model in order to generate inflation as well as explain the baryon asymmetry of the Universe. The $U(1)_N$, where N = B L is considered as a gauged charge, is broken by the singlet ϕ at GUT scale. ϕ can play role of inflaton.

The model contains the heavy Majorana neutrinos, which can be produced in a thermal bath or by decay of the Higgs singlet H_3 , real part of ϕ . Both thermal and non-thermal productions have been calculated. The baryon asymmetry is in agreement with experimental result in both cases with different choice of the complex angle $\hat{\theta}$. 37/38

Thanks you for your attention!