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1. Motivation

Inflation
Inflation was suggested to solve the flatness and hoziron problems. The
fundamental idea of inflation is that the Universe undergoes a period of
acceleration expansion, defined as a period when ä > 0, at early times. A
plausible scenario for driving such an accelerated expansion is provided by
scalar fields.
Matter-antimatter asymmetry
The baryon asymmetry of the Universe can be expressed as

Y∆B ≡
nB − nB

s

∣∣∣∣
0

,

where nB , nB are the number densities of baryons and antibaryons, s is the
entropy density, s = g∗(2π2/45)T 3 with g∗ is the number of degrees of
freedom in the plasma, and T is the temperature.
From Big-Bang Nucleosynthesis (BBN) and Wilkinson Microwave
Anisotropy Probe (WMAP),

Y BBN
∆B = (8.10± 0.85)× 10−11, Y CMB

∆B = (8.79± 0.44)× 10−11.
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All cosmological models agree that the Universe started with the same
amount of baryon and anti-baryon
⇒ The baryon asymmetry must be generated dynamically.

Sakharov requires

. Baryon number violation

. C and CP violation

. Out of equilibrium dynamics

The candidate scenario is Leptogenesis. Singlet and heavy Majorana
neutrinos Ni are introduced to provide mass to the light neutrinos via a
seesaw mechanism. These heavy neutrinos can decay into lighter particles
and create a lepton number asymmetry, which can be converted into a
baryon asymmetry,

Y∆B =
Csph

Csph − 1
Y∆L.
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Dark matter
Evidence for dark matter

v2
rot

r
=

GM(r)

r2
⇒ vrot =

√
GM(r)

r
,

where r is the distance of the tracer star from the galactic center and
M(r) is the galactic mass enclosed within this distance.

DM should be non-baryonic and cold, electrically neutral, stable (the life
time > the age of the Universe).
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2. The SU(3)C ⊗ SU(3)L ⊗ U(1)X (3-3-1) Models

In general the fermion triplets in the 3-3-1 models are arranged as

ψaL = (νaL, eaL,FaL)T ∼ (1, 3,Xψa),

QαL = (dαL,−uαL, JαL)T ∼ (3, 3∗,XQα),

Q3L = (u3L, d3L, J3L)T ∼ (3, 3,XQ3),

where the index a = 1, 2, 3 and α = 1, 2.
The electric charge operator is given by Q = T3 + βT8 + XI .
How to define X charges?
1-The electric charge is conserved requiring
Q < χ >= 0, Q < η >= 0, Q < ρ >= 0
2-The Yukawa Lagrangian needed to generate mass to all quarks is
invariant under the U(1)X
3-The anomaly condition Tr[SU(3)L]2[U(1)X ] = 0
4-The relations of Xψa and the electric charge of leptonic particles are
obtained by applying the electric charge operator on the lepton triplet.
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The minimal 3-3-1 model: FaL = (ec)aL, with (ec)aL ≡ (eaR)c

qea = −qeca ⇒ Xψa =
1

4
+

β

4
√

3
.

All X charges of triplets and singlets can be expressed in a single
parameter β. Using qea = −1 then β = −

√
3. Therefore,

Xψa = 0, XQ = −1

3
, XQ3 =

2

3
,

qua =
2

3
, qda = −1

3
, qJα = −4

3
, qJ3 =

5

3
.

The 3-3-1 model with neutral fermions: FaL = (Nc)aL, with
(NaR)c ≡ (Nc)aL
We get β = −1/

√
3, and

Xψa = −1

3
, XQ = 0, XQ3 =

1

3
,

qua =
2

3
, qda = −1

3
, qJα = −1

3
, qJ3 =

2

3
.
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3. Investigation of Dark Matter in Minimal 3-3-1
Models

. There is no dark matter candidate in the original 3-3-1 model. One
might introduce a Z2 symmetry so that one scalar triplet of the
theory is odd, while all other fields are even under the Z2 symmetry.
The odd particles act as inert fields. Therefore, the lightest and
neutral inert particle is stable and can be a dark matter candidate.

. The minimal 3-3-1 model originally works with three scalar triplets
ρ = (ρ+

1 , ρ
0
2, ρ

++
3 ), η = (η0

1, η
−
2 , η

+
3 ), χ = (χ−1 , χ

−−
2 , χ0

3).

. In order to enrich the inert scalar sector, one can consider the reduced
3-3-1 model by excluding η, or the simple 3-3-1 model by excluding ρ.
The reduced 3-3-1 model gives large flavor-changing neutral currents
as well as large ρ parameter.

. The simple 3-3-1 model with the replication of η or of χ, which are
additional inert scalars, can provide realistic dark matter candidates.
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The simple 3-3-1 model
The model works well with two scalar triplets as

η =

 1√
2

(u + S1 + iA1)

η−2
η+

3

 ∼ (1, 3, 0),

χ =

 χ−1
χ−−2

1√
2

(ω + S3 + iA3)

 ∼ (1, 3,−1).

The scalar potential is given by

Vsimple = µ2
1η
†η + µ2

2χ
†χ+ λ1(η†η)2 + λ2(χ†χ)2

+λ3(η†η)(χ†χ) + λ4(η†χ)(χ†η),

where µ1,2 have dimension of mass, while λ1,2,3,4 are dimensionless.
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The Higgs sector contains
+ eight Goldstone bosons GZ ≡ A1, GZ ′ ≡ A3, G±W ≡ η

±
2 , G±±Y ≡ χ±±2

and G±X ≡ cθχ
±
1 − sθη

±
3 ' χ

±
1 (tθ = u

ω → 0 since u � ω)
+ four massive scalars

h ' S1, m2
h '

4λ1λ2 − λ2
3

2λ2
u2,

H ' S3, m2
H ' 2λ2ω

2,

H± ' η±3 , m2
H± '

λ4

2
ω2.

The gauge boson masses arise from the Lagrangian∑
Φ=η,χ

(Dµ〈Φ〉)†(Dµ〈Φ〉),

where the covariant derivative is defined as

Dµ = ∂µ + igstiGiµ + igTiAiµ + igXXBµ.
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The gauge bosons with their masses are respectively given as

W± ≡ A1 ∓ iA2√
2

, m2
W =

g2

4
u2,

X∓ ≡ A4 ∓ iA5√
2

, m2
X =

g2

4
(ω2 + u2),

Y∓∓ ≡ A6 ∓ iA7√
2

, m2
Y =

g2

4
ω2,

A = sWA3 + cW

(
−
√

3tWA8 +
√

1− 3t2
WB

)
, mA = 0,

Z1 ' cWA3 − sW

(
−
√

3tWA8 +
√

1− 3t2
WB

)
, m2

Z1
' g2

4c2
W

u2,

Z2 '
√

1− 3t2
WA8 +

√
3tWB, m2

Z2
'

g2c2
W

3(1− 4s2
W )

ω2,

where sW = e/g = t/
√

1 + 4t2, with t = gX/g .
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The Yukawa Lagrangian is given by

LY = hJ33Q̄3LχJ3R + hJαβQ̄αLχ
∗JβR

+hu3aQ̄3LηuaR +
huαa
Λ

Q̄αLηχuaR

+hdαaQ̄αLη
∗daR +

hd3a
Λ

Q̄3Lη
∗χ∗daR

+heabψ̄
c
aLψbLη +

h′eab
Λ2

(ψ̄c
aLηχ)(ψbLχ

∗)

+
sνab
Λ

(ψ̄c
aLη
∗)(ψbLη

∗) + H.c.,

where the Λ ∼ ω.
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The simple 3-3-1 model with η replication
(called η′-model for shortcut)
An extra scalar triplet that replicates η is defined as

η′ =

 1√
2

(H ′1 + iA′1)

η′−2
η′+3

 ∼ (1, 3, 0).

The η′ and η have the same gauge quantum numbers but η′ is assigned as
an odd field under the Z2, η′ → −η′, so < η′ >= 0.
The scalar potential includes the Vsimple and the terms contained η′,

Vη′ = µ2
η′η
′†η′ + x1(η′†η′)2 + x2(η†η)(η′†η′) + x3(χ†χ)(η′†η′)

+x4(η†η′)(η′†η) + x5(χ†η′)(η′†χ) +
1

2
[x6(η′†η)2 + H.c .].

Here, µη′ has mass dimension, while xi (i = 1, 2, 3, ..., 6) are dimensionless.
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The states H ′1, A′1, η′±2 ≡ H ′±2 and η′±3 ≡ H ′±3 by themselves are physically
inert particles with the corresponding masses as follows:

m2
H′1

= M2
η′ +

1

2
(x4 + x6)u2, m2

A′1
= M2

η′ +
1

2
(x4 − x6)u2,

m2
H′±2

= M2
η′ , m2

H′±3
= M2

η′ +
1

2
x5ω

2,

where M2
η′ ≡ µ2

η′ + 1
2x2u

2 + 1
2x3w

2. If H ′1 (or A′1) is the lightest inert
particle (LIP), it can be the dark matter candidate.

Due to the Z2 symmetry, the inert scalars interact only with normal scalars
and gauge bosons, not with fermions.
The interactions of the inert scalars with gauge bosons are given in

Ltriple
gauge−η′ = −ig [η′†(TiAiµ)∂µη′] + H.c.,

Lquartic
gauge−η′ = g2[η′†(TiAiµ)2η′].
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The simple 3-3-1 model with χ replication
(called χ′-model for shortcut)
The χ replication takes the form

χ′ =

 χ′−1
χ′−−2

1√
2

(H ′3 + iA′3)

 ∼ (1, 3,−1).

The χ′ is assigned odd under the Z2 symmetry that requires < χ′ >= 0.
The additional potential due to the χ′ field is given as

Vχ′ = µ2
χ′χ
′†χ′ + y1(χ′†χ′)2 + y2(η†η)(χ′†χ′) + y3(χ†χ)(χ′†χ′)

+y4(η†χ′)(χ′†η) + y5(χ†χ′)(χ′†χ) +
1

2
[y6(χ′†χ)2 + H.c.].

m2
H′3

= M2
χ′ +

1

2
(y5 + y6)ω2, m2

A′3
= M2

χ′ +
1

2
(y5 − y6)ω2,

m2
H′±±2

= M2
χ′ , m2

H′±1
= M2

χ′ +
1

2
y4u

2,

where M2
χ′ ≡ µ2

χ′ + 1
2y2u

2 + 1
2y3ω

2. If H ′3 (or A′3) is the LIP, it can be the
dark matter candidate.
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Dark matter
The coupling λ1 is constrained by the mass of the SM Higgs, mh = 125
GeV. Fix λ2 = λ3 = λ4 = 0.1.
In η′-model:
The inert particles are H ′1,A

′
1,H

′±
2 ,H

′±
3 . With the condition

x6 < Min{0, −x4, (w/u)2x5 − x4}, H ′1 is the LIP ⇒ H ′1 is the DM
candidate.
Fix

x1 = 0.01, x2 = 0.03, x3 = 0.01, x4 = 0.07, x5 = 0.08, x6 = −0.09.

mH′1
depends on µη′ and ω.

In χ′-model:
The inert particles are H

′±
1 ,H

′±±
2 , H ′3,A

′
3. If we assume that

y6 < Min{0, −y5, (u/w)2y4 − y5}, H ′3 is the LIP ⇒ H ′3 is the DM
candidate.
Fix

y1 = 0.01, y2 = 0.04, y3 = 0.058, y4 = 0.01, y5 = 0.05, y6 = −0.06.

mH′3
depends on µχ′ and ω.
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We figure out the relic density as a function of DM mass for ω = 3 TeV
(red), ω = 4 TeV (green), and ω = 5 TeV (blue). (The horizontal line is
the WMAP limit on the relic density.)

η′-model χ′-model
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4. Inflation and Leptogenesis in the 3-3-1-1 Model

Motivation of the 3-3-1-1 model

. In the 3-3-1 model the lepton number of three components in a
triplet are different, so the lepton number operator does not commute
with the generators of the unitary group SU(3)L. So, one constructed
lepton number operator as the combination of T3,T8, and charged L
with the relation L = α′T3 + β′T8 + LI . L is considered as a global
symmetry.

. Since T3,T8 are gauged charges of the SU(3)L symmetry, L,L should
be gauged or local generators.
⇒ We extend the gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)X to
SU(3)C ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N (3-3-1-1), where N = B − L,
B = BI so that the anomalies associated with U(1)N and with the
usual 3− 3− 1 symmetry obviously vanish.
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. The Higgs scalar breaks the U(1)N symmetry can play a role of
inflaton.

. The right-handed neutrinos not only solve the small masses of the
observed neutrinos through a type I seesaw mechanism but also can
be a source for the CP asymmetry.

. We apply the extension to the version with neutral fermions because
there are some odd particles under the parity P = (−1)3(B−L)+2s .
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Review particles in the 3-3-1-1 model
Particle content
The fermion content of the 3-3-1-1 model which is anomaly free is given as

ψaL =

 νaL
eaL

(NaR)c

 ∼ (1, 3,−1/3,−2/3),

νaR ∼ (1, 1, 0,−1), eaR ∼ (1, 1,−1,−1),

QαL =

 dαL
−uαL
DαL

 ∼ (3, 3∗, 0, 0), Q3L =

 u3L

d3L

UL

 ∼ (3, 3, 1/3, 2/3) ,

uaR ∼ (3, 1, 2/3, 1/3) , daR ∼ (3, 1,−1/3, 1/3) ,

UR ∼ (3, 1, 2/3, 4/3) , DαR ∼ (3, 1,−1/3,−2/3) ,

where the quantum numbers located in the parentheses are defined upon
the gauge symmetries (SU(3)C , SU(3)L, U(1)X , U(1)N), respectively.
The family indices are a = 1, 2, 3 and α = 1, 2.
The NaR are the neutral leptons and U,Dα are the exotic quarks.
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To break the gauge symmetry and generate the masses in a correct way,
the 3-3-1-1 model needs the following scalar multiplets with their VEVs
conserving Q and P:

ρ = (ρ+
1 , ρ

0
2, ρ

+
3 )T ∼ (1, 3, 2/3, 1/3), 〈ρ〉 =

1√
2

(0, v , 0)T ,

η = (η0
1, η
−
2 , η

0
3)T ∼ (1, 3,−1/3, 1/3), 〈η〉 =

1√
2

(u, 0, 0)T ,

χ = (χ0
1, χ
−
2 , χ

0
3)T ∼ (1, 3,−1/3,−2/3), 〈χ〉 =

1√
2

(0, 0, ω)T ,

φ ∼ (1, 1, 0, 2), 〈φ〉 =
1√
2

Λ.

The gauge group SU(3)L ⊗ U(1)X ⊗ U(1)N is broken:

SU(3)L ⊗ U(1)X ⊗ U(1)N → U(1)Q ⊗ U(1)B−L.
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The Yukawa interactions and scalar potential are obtained as

LYukawa = heabψ̄aLρebR + hνabψ̄aLηνbR + h′νabν̄
c
aRνbRφ+ hUQ̄3LχUR

+hDαβQ̄αLχ
∗DβR + hua Q̄3LηuaR + hda Q̄3LρdaR

+hdαaQ̄αLη
∗daR + huαaQ̄αLρ

∗uaR + H.c ,

V (ρ, η, χ, φ) = µ2
1ρ
†ρ+ µ2

2χ
†χ+ µ2

3η
†η + λ1(ρ†ρ)2 + λ2(χ†χ)2

+λ3(η†η)2 + λ4(ρ†ρ)(χ†χ) + λ5(ρ†ρ)(η†η)

+λ6(χ†χ)(η†η) + λ7(ρ†χ)(χ†ρ) + λ8(ρ†η)(η†ρ)

+λ9(χ†η)(η†χ) + (f εmnpηmρnχp + H.c .) + µ2φ†φ

+λ(φ†φ)2 + λ10(φ†φ)(ρ†ρ) + λ11(φ†φ)(χ†χ) + λ12(φ†φ)(η†η).
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Scalar sector
We expand the neutral scalars around their VEVs such as

ρ =

 ρ+
1

1√
2

(v + S2 + iA2)

ρ+
3

 ; η =


1√
2

(u + S1 + iA1)

η−2
1√
2

(S ′3 + iA′3)

 ;

χ =


1√
2

(S ′1 + iA′1)

χ−2
1√
2

(ω + S3 + iA3)

 ; φ ∼ 1√
2

(Λ + S4 + iA4).

We assume that f , ω are the same order and Λ� ω � u, v . The physical
fields with respective masses can be written as:
For charged scalars,

H−4 =
vχ−2 +ωρ−3√

v2+ω2
, H−5 =

vη−2 +uρ−1√
u2+v2

,

G−Y =
ωχ−2 −vρ

−
3√

v2+ω2
,G−W =

uη−2 −vρ
−
1√

u2+v2
.
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The pseudoscalar A4 is massless.

A =
u−1A1 + v−1A2 + ω−1A3√

u−2 + v−2 + ω−2
.

GZ =
−uA1 + vA2√

u2 + v2
, GZ ′ =

−ω−1(u−1A1 + v−1A2) + (u−2 + v−2)A3√
(u−2 + v−2 + ω−2)(u−2 + v−2)

,

GX =
ωχ1 − uη∗3√
u2 + ω2

, H ′ =
uχ∗1 + ωη3√
u2 + ω2

.

For neutral scalars,

H =
uS1 + vS2√
u2 + v2

, H1 =
−vS1 + uS2√

u2 + v2
, H2 = S3, H3 ' S4.

H is identified as the SM Higgs boson.
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Gauge sector

W±
µ =

A1µ ∓ iA2µ√
2

, Y∓µ =
A6µ ∓ iA7µ√

2
, X 0

µ =
A4µ − iA5µ√

2
,

M2
W =

1

4
g2(u2 + v2), M2

Y =
1

4
g2(v2 + ω2), M2

X =
1

4
g2(u2 + ω2).

M2
γ = 0(exact!), Aµ =

√
3√

3 + 4t21

(
t1A3µ −

t1√
3
A8µ + Bµ

)
.

ZN
µ ' Cµ, m2

ZN ' 4g2t2
2 Λ2,

Z 1
µ '

√
3 + t2

1√
3 + 4t2

1

A3µ +
t1(
√

3t1A8µ − 3Bµ)√
3 + t2

1

√
3 + 4t2

1

, m2
Z1 '

g2(u2 + v2)

4c2
W

,

Z 2
µ '

√
3√

3 + t2
1

A8µ +
t1√

3 + t2
1

Bµ, m2
Z2 '

g2c2
Wω

2

(3− 4s2
W )

.

Note that we have set t1 ≡ gX/g , t2 ≡ gN/g .
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Fermion sector
From the LYukawa, we obtain the Dirac masses for all quarks and leptons.
The right-handed neutrinos get Majorana masses in the form
−1

2 ν̄
c
Rm

M
ν νR + H.c., where

[mM
ν ]ab = −

√
2h′νabΛ.

The observed neutrinos (∼ νL) naturally get small masses via a type I
seesaw mechanism,

meff
ν = −mD

ν (mM
ν )−1(mD

ν )T ∼ (hν)2

h′ν
u2

Λ
.

The masses of the neutral fermions NR can be generated via an effective
operator invariant under the 3-3-1-1 symmetry

λab
M
ψ̄c
aLψbL(χχ)∗ + H.c,

[mNR
]ab = −λab

ω2

M
.

Assume that M ∼ ω then mNR
∼ ω.
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In brief,

. After spontaneous symmetry breaking, there are

9 goldstone bosons A4,GZ ,GZ ′ ,GX ,G
∗
X ,G

±
Y ,G

±
W ,

9 massive gauge bosons ZN ,Z 1,Z 2,X 0,X 0∗,Y±,W±, and one
massless γ,
4 neutral Higgs bosons H,H1,H2,H3, one massive pseudoscalar
A, complex Higgs H ′,H ′∗, 4 charged scalars H±4 ,H

±
5

. The mass of H3,Z
N , νR is proportional to Λ.

The mass of other new massive particles, A,H1,H2,H
±
4 ,H

±
5 ,H

′,H ′∗,
Z 2
µ ,X

0
µ ,X

0∗
µ ,Y±µ , U,Dα,NR , is proportional to ω.

. In this model, L(GX ,H
′∗,H−4 ,G

−
Y ,X

0,Y−) = 1 while the remaining
Higgs and gauge bosons have zero lepton number.

. The Majorana masses of the right-handed neutrinos violate L with ±2
units → The decay of Majorana right-handed neutrinos can generate
the lepton asymmetry.
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Generation of inflation in the 3-3-1-1 model
The scalar singlet φ is completely breaking U(1)N . We expect that the
VEV of φ is very high and consider the singlet scalar φ plays the role of
inflaton field.
We identify the inflaton with the real part of the B − L Higgs field,
Φ =

√
2R[φ]. In the leading- log approximation, we obtain

V (Φ) = Vtree + Veff '
λ

4
(Φ4 + a′Φ4 ln

Φ

∆
),

where

a′ =
a + 72λ2

16π2λ
, a = f (h′νii , gN , λ10,11,12).

We can express the number of e-folds N, the spectral index ns , the tensor
to scalar ratio r (a canonical measure of gravity wave from inflation) and
the running index α in terms of a′,∆,Φ. Experiments require
ns ∈ (0.94, 0.98), r ∈ (0.001, 0.15), α ∈ (−0.0314, 0.0046).
We fix N= 60.

V ′(Φ) = 0⇒< Φ >' 23.6mP,

mΦ =
√

V ′′(Φ)
∣∣
Φ=<Φ>

' 2.67× 1013GeV.
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Leptogenesis

CP asymmetry
The Majorana neutrinos are defined as

νiM = νiR + νciR ,

νiE = νiL + νciL,

Ni = NiR + Nc
iR .

ēiνkMH−5 , N̄iH
′νkM interactions violate the lepton number

=⇒ νkM can generate lepton asymmetry.
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εi(1)
νkM =

Γ(νkM → ei + H+
5 )− Γ(νkM → e i + H−5 )

2ΓνkM

' 1

8πC0

[
gauge transportation

]
s2
β

∑
l

Im[hν∗
ik hν

lk ]

+
s4
β

8πC0

∑
j

√
gj
[
1− (1 + gj)log [1 + 1/gj ] + (1− gj)

−1
]
Im[(hν†hν)kjh

ν∗
ik hν

ij ],

where ΓνkM is the total decay rate of νkM at tree level,

gj =
m2

νjM

m2
νkM

, C0 = (2 + s2
β)

∑
i

|hν
ik |2 = (2 + s2

β)(hν†hν)kk , tβ = v/u.

εi(2)
νkM =

Γ(νkM → Ni + H ′∗)− Γ(νkM → Ni + H ′)

2ΓνkM

' 1

8πC0

[
gauge transportation

]∑
l

Im[hν∗
ik hν

lk ]

+
1

8πC0

∑
j

√
gj
[
1− (1 + gj)log [1 + 1/gj ] + s2

β(1− gj)
−1

]
Im[(hν†hν)kjh

ν∗
ik hν

ij ],
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Yukawa coupling matrix
hν matrix is required to be complex.
If we ignore
-the mixing between the charged lepton
-the mixing between heavy Majorana neutrinos,
the most general hν matrix is given by

hν =

√
2

u
Diag(

√
mν1M

,
√
mν2M

,
√
mν3M

).R.Diag(
√
mν1 ,

√
mν2 ,

√
mν3).U†,

where R is an orthogonal matrix expressed in terms of arbitrary complex
angles θ̂1, θ̂2, θ̂3 as following

R =

 ĉ2ĉ3 −ĉ1ŝ3 − ŝ1ŝ2ĉ3 ŝ1ŝ3 − ĉ1ŝ2ĉ3

ĉ2ŝ3 ĉ1ĉ3 − ŝ1ŝ2ŝ3 −ŝ1ĉ3 − ĉ1ŝ2ŝ3

ŝ2 ŝ1ĉ2 ĉ1ĉ2

 ,

where ĉi = cos θ̂i , ŝi = sin θ̂i , i = 1, 2, 3.
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U = UPMNS.P,

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

P =

 1 0 0
0 e iσ 0
0 0 e iρ

 ,

where cij = cos θij , sij = sin θij ,

sin2 θ23 ' 0.466, sin2 θ12 ' 0.312, sin2 θ13 ' 0.016.

∆m2
ν12

= m2
ν2
−m2

ν1
= 7.53×10−5eV2, ∆m2

ν23
= m2

ν3
−m2

ν2
= 2.44×10−3eV2.

δ is unknown CP violating Dirac phase.
σ, ρ are the CP violating Majorana phases.
hνab are function of the phase δ, ρ, σ, the heavy majorana neutrinos masses

and the complex angles. For simplicity, we assume θ̂1 = θ̂2 = θ̂3 ≡ θ̂.
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Thermal production
In the thermal scenario, the heavy Majorana neutrinos are produced in a
thermal bath.
For the channel νkM → eiH

+
5 , e iH

−
5 the CP asymmetry depends on flavor

because Li (ei ) = 1. However, since L(Ni ) = 0, L(H ′) = −1, the CP
asymmetry due to the decay νkM → NiH

′∗, NiH
′ is considered flavor

independent.
Assume that ν1M � ν2M , ν3M .
We consider the CP asymmetry due to the decay of the lightest heavy
Majorana ν1M .
The baryon asymmetry is related to the lepton asymmetry as

Y∆B = − 8

15

( ∑
i=1,2,3

Y i
∆L + Y 0

∆L

)
.
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Figure: Contour plot of Y∆B in the region 5× 10−11 < Y∆B < 10−10 on the
plane of the complex angle θ̂ for δ = 4.3 rad, σ = −1.5 rad, ρ = −1 rad,
mH3 = 2.67× 1013 GeV, < φ >= 23.6mP, mν2M

= mν3M
= 103mν1M

, mν1M
= 109

GeV, mν1 = 0.01 eV.
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Non-thermal production
The heavy Majorana neutrinos are produced through the direct
non-thermal decay of the heavy H3 Higgs boson.
The total CP asymmetry is the summation of all flavor CP asymmetry,

ενkM
=
∑
i

(εi(1)
νkM

+ εi(2)
νkM

) =

∑
j 6=k Bj Im[[(hν†hν)kj ]

2]

(hν†hν)kk
, Bj ' −

11

160π
√
gj
.

The lepton asymmetry is related with the CP asymmetry through

Y∆L =
3

2
ενkM
× Brk ×

TR

mH3

, TR =

(
90

π2g∗

) 1
4

(ΓH3mP)
1
2 , g∗ = 106.75,

Brk denotes the branching ratio of the decay channel H3 → νkMνkM .
Assumed that mν1M

� mH3 < mν2M
∼ mν3M

, mH3 < mZN and
Γ(H3 → hh)� Γ(H3 → ν1Mν1M) when λ10;11;12 are negligibly small,
therefore,

Y∆L '
3

2
εν1M

× TR

mH3

.
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Figure: Contour plot of Y∆B in the region (5× 10−11 < Y∆B < 10−10) on the

plane of the complex angle θ̂ for δ=4.3 rad, σ=-1.5 rad, ρ=-1 rad, mν1 =0.01 eV,
mH3 = 2.67× 1013 GeV, < φ >= 23.6mP, mν2M

= mν3M
= 1014 GeV,

mν1M
= 1011 GeV (red) and mν1M

= 109 GeV (blue).
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5. Summary

We have considered two versions of the 3-3-1 model:

. The minimal 3-3-1 model behaved as the simple 3-3-1 model with
two scalar triplets η and χ has been reviewed. The original simple
3-3-1 model does not contain dark matter. By introducing an odd
Higgs triplet (η′ or χ′) under a Z2 symmetry while all other fields are
even, the simple 3-3-1 model with the replication of η or of χ can
provide the dark matter candidate.

. The 3-3-1 model with neutral fermion is extended to the 3-3-1-1
model in order to generate inflation as well as explain the baryon
asymmetry of the Universe. The U(1)N , where N = B − L is
considered as a gauged charge, is broken by the singlet φ at GUT
scale. φ can play role of inflaton.
The model contains the heavy Majorana neutrinos, which can be
produced in a thermal bath or by decay of the Higgs singlet H3, real
part of φ. Both thermal and non-thermal productions have been
calculated. The baryon asymmetry is in agreement with experimental
result in both cases with different choice of the complex angle θ̂. 37 / 38



Thanks you for your attention!
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