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Episode 3: 물리학의 언어

2014-2학기 “물리학의 현대적 이해”   첫 만남  권 영 준 (연세대 물리학과)

무엇을 배우는가?
1. 첫 만남  

•과목 소개 

•물리 이론을 위한 오컴의 면도날 

•왜 현대적 이해가 필요한가? 

2. 물리학 - 호기심, 아름다움, 유용함 

•호기심 탐구의 역사  

•대칭성의 아름다움 

•꽤 쓸모 있는! 

3. 물리학의 언어 

•모델링, 수식, 단위 

•the large and the small 

•The unreasonable effectiveness of mathematics in the natural sciences
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Physics as a numerical science
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물리학은 실험과 관측을 통해 
모델과 가설을 검증하며 이를 
바탕으로 이론을 만들어 간다. 

실험과 이론(모델, 가설 등)을 
비교하기 위한 공통 요소는? 

- 수 (數, number) 

o 이론: 수식으로 표현 

o 실험: 결과를 숫자로 표현

“홈런된 공의 운동량을 추정하시오” 

“그것을 풀라는 문제임”

Memories from my sophomore years
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compare high-precision measurements with theoretical 
calculations 

- 가설(모델)을 검증하여 받아들이거나, 버리거나, 아니면 수정을 가하거나 

Why high precision? 

- 실험 결과와 대강 비슷한 결과를 예측하는 가설들이 한 개 이상 있는 경우 

- 대강 비슷한 숫자가 나오는 것은 우연의 일치일 가능성이 크지만 고도의 정밀
도로 일치하는 것은 심상치 않은 것 아닐까? 

- 물리학의 역사에서 당시 존재하던 이론(가설)과 실험 결과 사이의 작은 차이를 
파고들어 새로운 (훨씬 심오한) 물리법칙을 발견한 사례가 적지않다.
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Physics as a numerical science

예) 케플러의 타원, 흑체복사 곡선, 수성 궤도, Lamb shift & QED
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talking about high-precision?
전자의 스핀이 만드는 자석의 크기는? 

- 양자역학(혹은 양자전자기학)에서 g라는 값으로 표시 
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•전하를 띈 입자(“하전 입자”, 예를 들면 전자, 양성자)가 움직이면 자기장이 
생긴다. (전자석의 원리) 
•전자의 궤도운동은 자기장을 만든다 (= 전자석이 된다) 
•전자의 스핀도 자기장을 만든다 (즉, 전자는 가만히 있어도 전자석이 된다)
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talking about high-precision?
전자의 스핀이 만드는 자석의 크기는? 

- 양자역학(혹은 양자전자기학)에서 g라는 값으로 표시 
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Julian	  Schwinger	  
양자전자기학의	  창시자	  
1965	  노벨물리학상

g = 2(1 + a) ⇡ 2

P.	  A.	  M.	  Dirac:	  	  g	  ≃2	  

J.	  Schwinger:	  

a =
g � 2

2
=

↵

2⇡
⇡ 0.0011614

Schwinger	  이후 — 엄청난 정밀도로 
이론 계산과 실험 측정이 이루어짐

실험: a = 0.00 115 965 218 07 (3)!
이론: a = 0.00 115 965 218 18 (8)
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talking about high-precision?
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(a lesson)  
   만일 주어진 현상을 대략 정성적으로 설명하는데서 만족했다면 
앞서 예시한 바와 같은 측정과 계산의 비교에서의 작은 차이의 발견
은 가능하지 않았을 것이다.



The large and the small



How Big is the Universe?

“The universe is THIS big”
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Units for measurements

• They are standard units (SI), but human-oriented!
• Any “natural” units?!
   à for this, we need modern (20th C) physics!
! i.e. Relativity & Quantum Theory 
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SI units (International System of Units)
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Base Quantity unit symbol

길이 meter m

질량 kilogram kg

시간 second s

전류 ampere A

온도 kelvin K
물질의 양  mole mol

빛의 밝기 candela cd
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The Large & the small
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The Large & the small

1.4	  x	  1010	  	  years

Meaning of H0, the Hubble constant, H0?
Meaning of H0, the Hubble length, 𝓵H?
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the Hubble’s law
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허블의 법칙은 먼 우주로부터 오는 빛의 적색 편이(red shift)는 거리에 
비례한다는 법칙이다. 이 법칙은 약 10년간의 관측 끝에 1929년 Edwin 
Hubble과 Milton Humason이 발표하였다. 허블의 법칙은 우주팽창론
의 첫 관측 증거이며, 빅뱅에 대한 증거로 가장 널리 인용된다. 2013년 3
월 발표된 유럽 우주국 플랑크 위성(Planck) 데이터에 따르면, 허블 상수
는 약 67.80 km/(s · Mpc)이다.

Hubble 상수(H0)의 의미는 무엇인가?

http://ko.wikipedia.org/wiki/%EB%B9%9B
http://ko.wikipedia.org/wiki/%EC%A0%81%EC%83%89_%ED%8E%B8%EC%9D%B4
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Doppler effect
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도플러 효과(Doppler effect, 도플러 현상, 도플러 편이 현상)는 크리스티안 도플
러가 발견한 것으로, 어떤 파동(예를 들어 소리 혹은 빛)의 파동원과 관찰자의 상대 
속도에 따라 진동수와 파장이 바뀌는 현상을 가리킨다. 

빛의 경우 광원과 관측자의 거리가 가까와지면 진동수가 증가하고(blue shift) 거리
가 멀어지면 진동수가 감소한다(red shift). 진동수의 변화는 상대속도에 비례한다.
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   16.1 Evidence of the Big Bang 579

 v ! HR (16.1)

The parameter H is called the Hubble parameter, and it is related to a scale factor 
a that is proportional to the distance between galaxies by

 H !
1
a 

da
dt  (16.2)

Because the universe has been expanding, Hubble’s parameter is not constant, 
but decreases slowly over long periods of time. Its value today is sometimes 
denoted by H 0 and called the Hubble constant. George Lemaître fi rst derived 
Hubble’s law in 1927 using general relativity, but his result was not well known 
because it was published in a Belgian journal.

In order to determine whether Hubble’s law is valid, it is necessary to know 
the distance R to objects for which the redshift has been measured. Hubble de-
veloped sophisticated techniques that used the brightness of stars and galaxies 
to determine the distances R. Hubble was able to do this with some certainty for 
stars out to distances of 10 million lightyears and, with some additional assump-
tions, for galaxies out to distances of 500 million lightyears.

Together with his gifted colleague Milton Humason, Hubble examined, over 
a period of many years, hundreds of stellar objects to determine their redshifts. By 

Hubble’s law

Hubble parameter

Cluster!
nebula in

Distance in!
lightyears

Redshift

Virgo

7.8 " 107

1,200 km/s

Ursa Major

1.0 " 109

15,000 km/s

Corona Borealis

1.4  " 109

22,000 km/s

Boötes

2.5  " 109

39,000 km/s

Hydra

4  " 109

61,000 km/s

H # K

Figure 16.1 Redshift data for 
various galaxies are shown with 
their distance from Earth in light-
years. The spectrum of each gal-
axy is the wide, hazy band placed 
in the middle between the labora-
tory comparison spectra. The K 
(393 nm) and H (397 nm) ab-
sorption lines of calcium are 
shown redshifted by the arrow 
and move to the right for higher 
velocities. These early data con-
vincingly showed that the universe 
was expanding.
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v = H0R
우주의 팽창!
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580 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

1929 he was able to show that 49 galaxies (which he called extragalactic nebulae) fit 
the velocity-distance relationship. Hubble’s results required painstaking measure-
ments of brightness and redshifts. By 1935 Hubble and Humason had catalogued 
the redshifts of 100 additional galaxies; these data unequivocally showed that the 
galaxies farthest away from us were moving at the highest speeds.

Hubble showed that Equation (16.1) is valid. The linearity between v and R 
remains valid today (Figure 16.2), although the distance measurements have 
been corrected over the intervening years as more observational data were col-
lected. Today we believe that Hubble’s constant H 0 is about 22 km/s per million 
lightyears.

It is not necessary for Earth to be at the center of the universe in order to 
observe the expansion. We show in Figure 16.3 a balloon with dots. Notice that 
as the balloon is inflated, all the dots move further apart from each other. The 
surface of the balloon is two-dimensional; a three-dimensional example often 
quoted is raisins in bread dough. As the bread bakes, it rises and expands in 
three dimensions, and the raisins separate. The raisins all move further apart, 
with the ones on the outside moving faster. Something similar happens as the 
universe expands and the galaxies separate. We will discuss in Section 16.6 the 
possibility of using Hubble’s constant to determine the age of the universe.
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Figure 16.2 An analysis of 15 
clusters of galaxies for the reces-
sion velocity as a function of dis-
tance. The solid line rep resents a 
Hubble constant of 15 km/s per 
million lightyears (or 49 km ! s"1 
! Mpc"1). Various analyses of the 
distances give different values of 
H. From G. Siegfried Kutter, The Uni-
verse and Life, Copyright 1987 by 
Jones and Bartlett Learning, Sudbury, 
MA. Used with permission.

Figure 16.3 A representation 
of how galaxies are receding with 
respect to each other. As the bal-
loon is inflated, each dot is fur-
ther away from the other dots. As 
the universe expands it seems to 
remain homogeneous.

03721_ch16_577-615.indd   58003721_ch16_577-615.indd   580 9/29/11   10:24 AM9/29/11   10:24 AM

(Q) 아래 도표로부터 Hubble 상수 H0의 
값을 추정하시오. 단위는 (km/s)/Mpc를 
사용하시오.

Note: 여기 소개하는 데이터는 조금 
오래된 측정결과이므로 허블상수의 
최신값과는 약간 차이가 있음.

1 pc = 3.3 ly = 3⇥ 1016 m
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(Q) 아래
값을
사용하시오

1 pc = 3.3 ly = 3⇥ 1016 m

(Q) Hubble 상수를 알면 우주의 
크기를 추정할 수 있을까?

`H = c/H0Hubble length:



Earth: 1.3 x 107 m

Cosmic Journey Through Our Backyard 
where are we now?

Solar sysem: 1013 m
Stars in the solar neighborhood: 1017 m

Milky Way Galaxy: 1021 m
Local group of galaxies: 3 x 1022 m

Local Supercluster: 1024 m

?
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The Large & the small
[Homework]!
Express your height, mass and age in terms of the !
Largest and smallest such measurements in the universe!

For example, let’s think about the mass.!
!
• 60 kg = 60 kg * (mp / 1.7x10-27 kg)!
!     = 3.5 x 1028 mp!

!

• 60 kg = 60 kg * (Muniv. / 2x1052 kg)!
!     = 3.0 x 10-51 Muniv.
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Same physics for all scales?
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물리법칙을 표현하는 수학의 위대한 아름다움… 
• ‘the unreasonable effectiveness of mathematics’ (Eugene Wigner) 

!

!

!

!

!

• ‘The universe is both rationally transparent and rationally 
beautiful’ (John Polkinghorne)

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960) 

The Unreasonable Effectiveness of Mat hematics 
in the Natural Sciences 

Richard Courant Lecture in Mathematical Sciences delivered at New York University, 
May 11,  1959 

E U G E N E  P. WIGNER 
Princeton University 

“and it i s  probable that there i s  some secret here 
which remains to be discovered.” (C. S .  Peirce) 

There is a story about two friends, who were classmates in high school, 
talking about their jobs. One of them became a statistician and was working 
on population trends. He showed a reprint to his former classmate, The 
reprint started, as usual, with the Gaussian distribution and the statistician 
explained to  his former classmate the meaning of the symbols for the actual 
population, for the average population, and so on. His classmate was a 
bit incredulous and was not quite sure whether the statistician was pulling 
his leg. “How can you know that?” was his query. “And what is this 
symbol iere?” “Oh,” said the statistician, “this is n.” “What is that?” 
“The ratio of the circumference of the circle to its diameter.” “Well, now 
you are pushing your joke too far,” said the classmate, “surely the pop- 
ulation has nothing to do with the circumference of the circle.” 

Naturally, we are inclined to smile about the simplicity of the classmate’s 
approach. Nevertheless, when I heard this story, I had to admit to an 
eerie feeling because, surely, the reaction of the classmate betrayed only 
plain common sense. I was even more confused when, not many days later, 
someone came to me and expressed his bewilderment1 with the fact that 
we make a rather narrow selection when choosing the data on which we 
test our theories. “How do we know that, if we made a theory which focusses 
its attention on phenomena we disregard and disregards some of the phe- 
nomena now commanding our attention, that we could not build another 
theory which has little in common with the present one but which, never- 
theless, explains just as many phenomena as the present theory.” It has 
to be admitted that we have not definite evidence that there is no such theory. 

The preceding two stories illustrate the two main points which are the 

‘The remark to be quoted was made by F. Werner when he was a student in Princeton. 

1 



If you stop to think about it, all this is very odd. Mathematics, after all, is 
just abstract thinking, but it turns out that some of the most beautiful 
patterns that the mathematicians can think up are not just airy-fairy 
ideas, but they actually occur, out there, in the structure of the world 
around us. Dirac’s brother-in-law, Eugene Wigner, (himself also a Nobel 
prize winner) once called it ‘the unreasonable effectiveness of 
mathematics’. He also said it was a gift that we neither deserved nor 
understood. I do not know about deserving it, but I would certainly like 
to understand this strange property that makes theoretical physics both 
possible and greatly rewarding. 

The universe is both rationally transparent and rationally beautiful. The 
first fact makes science possible, the second gives scientists their deepest 
satisfaction, the sense of wonder at the marvellous order revealed to our 
enquiry.   

(J. Polkinghorne)
23
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14 E. P. WIGNER 

in our search for what I called the “ultimate truth”. The reason that such 
a situation is conceivable is that, fundamentally, we do not know why our 
theories work so well. Hence their accuracy may not prove their truth and 
consistency. Indeed, it is this writer’s belief that something rather akin ta 
the situation which was described above exists if the present laws of heredity 
and of physics are confronted. 

Let me end on a more cheerful note. The miracle of the appropriate- 
ness of the language of mathematics for the formulation of the laws of 
physics is a wonderful gift which we neither understand nor deserve. We 
should be grateful for it and hope that it will remain valid in future research 
and that it will extend, for better or for worse, to our pleasure even though 
perhaps also to our bafflement, to wide branches of learning. 

The writer wishes to record here his indebtedness to Dr. M. Polanyi 
who, many years ago, deeply influenced his thinking on problems of episte- 
mology, and to V. Bargmann whose friendly criticism was material in 
achieving whatever clarity was achieved. He is also greatly indebted to  
A. Shimony for reviewing the present article and calling his attention to 
C. S. Peirce’s papers. 
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E.	  Wigner


