

Basic statistics for HEP analyses

Youngjoon Kwon (Yonsei U.)

Aug. 11, 2014 Lecture at Sungkyunkwan U.

Ireely taking from other people's lecture slides, w/o properly citing the references

• just a rough list (from which I composed this lecture) is given

In not paying attention to any mathematical rigor at all

It will be simply impossible to cover "everything" even with the extended time of 180 minutes...

 so, I end up covering just a little fraction of the story, with a subjective choice of topics

Please stop me any time if you don't follow the story, otherwise it will be merely a pointless series of slides.

References (very rough)

• Glen Cowan @ CERN lectures, July 2011

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

• Tom Junk @ TRIUMF, July 2009

• • • •

- S. T'Jampens @ FAPPS '09, Oct. 2009
- mini-reviews on Probability & Statistics in RPP (PDG)
 - http://pdg.lbl.gov/2013/reviews/rpp2013-rev-statistics.pdf

Outline

Basic elements

- some vocabulary
- Probability axioms
- some probability distributions
- Two approaches: Freq. vs. Bayesian
- Generation Hypothesis testing
- Parameter estimation
- Other subjects "nuisance", "spurious", "elsewhere"...

Basic elements

some vocabulary

- random variables, PDF, CDF
- **expectation** values
- 😡 mean, median, mode
- Standard deviation, variance, covariance matrix
- **correlation coefficients**

Random variables and PDFs

- A random variable is a numerical characteristic assigned to an element of the sample space; it can be discrete or continuous.
- Suppose outcome of experiments is continuous:

 $P(x \in [x, x + dx]) = f(x)dx$

 $\Rightarrow f(x)$ is the **probability density function** (PDF) with

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

• Or, for discrete outcome x_i with e.g. $i = 1, 2, \cdots$

*
$$P(x_i) = p_i$$
 "probability mass function"
* $\sum_i P(x_i) = 1$

Cumulative distribution function (CDF)

• The probability *F*(*x*) to have an outcome less than or equal to *x* is called the **cumulative distribution function** (CDF).

$$\int_{-\infty}^{x} f(x') dx' \equiv F(x) \, .$$

• Alternatively, we have $f(x) = \partial F(x) / \partial x$.

Expectation value

g(X), h(X): functions of random variable X

• for discrete $X \in \Omega$

$$E(g) = \sum_{\Omega} P(X) g(X)$$

• for continuous $X \in \Omega$

$$E(g) = \int_{\Omega} dX f(X) g(X)$$

• *E* is a linear operator

 $E[\alpha g(X) + \beta h(X)] = \alpha E[g(X)] + \beta E[h(X)]$

Examples of expectation values

• mean – expectation value for the PDF (f(X) or $P(X_i)$)

$$\mu = \overline{X} = E(X) = \langle X \rangle = \int_{\Omega} dX f(X) X$$

• **variance** – it may not always exist!

$$\sigma^2 = V(X) = E[(X - \mu)^2]$$
$$= E(X^2) - [E(X)]^2$$
$$= \int_{\Omega} dX f(X) (X - \mu)^2$$

sample mean & sample variance

- *n* measurements $\{x_i\}$ where x_i follows $N(\mu, \sigma)$
- sample mean

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

With more measurements, the estimation of the mean will become more accurate.

• sample variance

$$V(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \overline{x^2} - \overline{x}^2$$

Sample variance approaches σ^2 for large *n*.

Mean and Variance in 2-D

• Expectation value in 2-D: (*X*, *Y*) as RV

$$E[g(X,Y)] = \iint_{\Omega} dX \, dY f(X,Y) \, g(X,Y)$$

 \Rightarrow Extension to higher dimension is straightforward!

• **mean** of *X*

$$\mu_X = E[X] = \iint_{\Omega} dX \, dY f(X, Y) \, X$$

• variance of *X*

$$\sigma_X^2 = E[(X - \mu_X)^2] = \iint_{\Omega} dX \, dY f(X, Y) \, (X - \mu_X)^2$$

Covariance matrix

• Given a *n*-dimensional random variable $\vec{X} = (X_1, \dots, X_n)$, the covariance matrix C_{ij} is defined as:

$$C_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)]$$
$$= E[X_i X_j] - \mu_i \mu_j$$

• more intuitive is the **correlation coefficient**, ρ_{ij} , given by

$$\rho_{ij} = \frac{C_{ij}}{\sigma_i \sigma_j}$$

properties of covariance matrix

- bounded by one: $-1 \le \rho_{ij} \le +1$
- for independent variables $X, Y: \rho(X, Y) = 0$ But the reverse is not true! (e.g. $Y = X^2$)
- If $f(X_1, \dots, X_n)$ is a multi-dim. Gaussian, then $cov(X_i, X_j)$ gives the *tilt* of the ellipsoid in (X_i, X_j)

Correlations - 2D examples

Error propagation on *f*(*x*,*y*)

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}\right) \left(\begin{array}{cc} V_{xx} & V_{xy} \\ V_{yx} & V_{yy} \end{array}\right) \left(\begin{array}{cc} \partial f/\partial x \\ \partial f/\partial y \end{array}\right)$$

(Q) What if *x* and *y* are independent?

(HW) Obtain the error on f(x,y) = C x y

Statistics & Probability

Statistics is largely the inverse problem of probability.

• Probability:

Know parameters of the theory \Rightarrow predict distributions of possible experimental outcomes

• Statistics:

Know the outcome of an experiment \Rightarrow extract information about the parameters and/or the theory

- Probability is the easier of the two *more straightforward*.
- Statistics is what we need as HEP analysts.
- In HEP, the statistics issues often get very complex because we know so much about our data and need to incorporate all of what we find.

Probability Axioms

Consider a set S with subsets A, B, ... For all $A \subset S, P(A) \ge 0$ For all $P(\overline{S}) \stackrel{\frown}{=} 1^{A} \ge 0$ FoIf $A \cap B \stackrel{P(S)}{=} \emptyset, \overline{P}(A \cup B) = P(A) + P(B)$ If $A \cap B = \emptyset, P(A \cup B) = P(A) + P(B)$ P(S) = 1

Kolmogorov (1933)

If Also define conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Note: $P(A|B) \neq P(B|A)$

An extreme (and personal) case:

- \blacktriangleright Ω : all people
- ► *P*(woman) = 50%
- P(pregnant | woman) = 3%

Note: $P(A|B) \neq P(B|A)$

P(data|theory) ≠ P(theory|data)

An extreme (and personal) case:

- \triangleright Ω : all people
- \blacktriangleright P(woman) = 50%
- \blacktriangleright P(pregnant | woman) = 3%
- \blacktriangleright P(pregnant) = 1.5%

 \blacktriangleright P(woman | pregnant) = 100%

Indeed

$$P(w|p) = rac{P(p|w) \cdot P(w)}{P(p)}$$

 $\checkmark \land \land \land$

< = > < = >

Two interpretations of Probability

Relative frequency

Frequentist

A, B, ... are outcomes of a repeatable experiment

 $P(A) = \lim_{n \to \infty} \frac{\text{times outcome is } A}{n}$

Subjective probability Bayesian

A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of belief that A is true

Frequentist approach is, in general, easy to understand, but some HEP phenomena are best expressed by subjective prob., e.g. systematic uncertainties, Prob(Higgs boson exists), ...

some useful distributions

Distribution	Probability density function f (variable; parameters)	Characteristic function $\phi(u)$	Mean	Variance σ^2
Uniform	$f(x; a, b) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$	$\frac{e^{ibu} - e^{iau}}{(b-a)iu}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Binomial	$f(r; N, p) = \frac{N!}{r!(N-r)!} p^r q^{N-r}$	$(q + pe^{iu})^N$	Np	Npq
	$r = 0, 1, 2, \dots, N$; $0 \le p \le 1$; $q = 1 - p$			
Poisson	$f(n;\nu) = \frac{\nu^n e^{-\nu}}{n!} ; n = 0, 1, 2, \dots ; \nu > 0$	$\exp[\nu(e^{iu}-1)]$	ν	ν
Normal (Gaussian)	$f(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(x-\mu)^2/2\sigma^2)$	$\exp(i\mu u - \frac{1}{2}\sigma^2 u^2)$	μ	σ^2
	$-\infty < x < \infty ; -\infty < \mu < \infty ; o > 0$			
Multivariate Gaussian	$f(\boldsymbol{x};\boldsymbol{\mu},V) = \frac{1}{(2\pi)^{n/2}\sqrt{ V }}$	$\exp\left[ioldsymbol{\mu}\cdotoldsymbol{u}-rac{1}{2}oldsymbol{u}^TVoldsymbol{u} ight]$	μ	V_{jk}
	$ imes \exp\left[-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu})^TV^{-1}(oldsymbol{x}-oldsymbol{\mu}) ight]$			
	$-\infty < x_j < \infty; -\infty < \mu_j < \infty; V >$	0		
χ^2	$f(z;n) = \frac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma(n/2)} ; z \ge 0$	$(1 - 2iu)^{-n/2}$	n	2n

Binomial distribution

Given a repeated set of N trials, each of which has probability p of "success" (hence 1-p of "failure"), what is the distribution of the number of successes if the N trials are repeated over and over?

Binom
$$(k \mid N, p) = \left(\frac{N}{k}\right) p^k (1-p)^{N-k}, \quad \sigma(k) = \sqrt{\operatorname{Var}(k)} = \sqrt{Np(1-p)}$$

where k is the number of success trials
 (Ex) events passing a selection cut, with a fixed total N

Poisson distribution

• Limit of Binomial when $N \to \infty$ and $p \to 0$ with $Np = \mu$ being finite and fixed \Rightarrow Poisson distribution

Poiss
$$(k \mid \mu) = \frac{e^{-\mu}\mu^k}{k!}$$
 $\sigma(k) = \sqrt{\mu}$
Normalized to
unit area in
two different senses
$$\sum_{k=0}^{\infty} \text{Poiss}(k \mid \mu) = 1, \quad \forall \mu$$

$$\int_{0}^{\infty} \text{Poiss}(k \mid \mu) d\mu = 1 \quad \forall k$$

All counting results in HEP are assumed to be Poisson-distributed

Statistical methods for HEP analysis

6 70

Gaussian (Normal) distribution

$$f(x;\mu,\sigma^{2}) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(x-\mu)^{2}/2\sigma^{2})$$

$$\int_{-\infty}^{x} f(x)dx = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sqrt{2\sigma^{2}}}\right) \right]$$

$$\int_{-\infty}^{0} \int_{-\infty}^{0} \int_{-\infty}^{0}$$

26

Gaussian (Normal) distribution

Table 36.1: Area of the tails α outside $\pm \delta$ from the mean of a Gaussian distribution.

Poisson for large μ is approximately Gaussian of width $\sigma = \sqrt{\mu}$

If in a counting experiment all we have is a measurement n, we often use this to estimate μ .

We then draw \sqrt{n} error bars on the data. This is just a convention, and can be misleading. (It is still recommended you do it, however.)

€

Not all Distributions are Gaussian

Track impact parameter distribution for example

Multiple scattering -core: Gaussian; rare large scatters; heavy flavor, nuclear interactions, decays (taus in this example)

Statistics/Thomas R. Junk/TSI July 2009

Chi-square (χ^2) distribution

The chi-square pdf for the continuous r.v. Z ($Z \ge 0$) is defined by

$$f(z;n) = \frac{1}{2^{n/2} \Gamma(n/2)} z^{n/2-1} e^{-z/2}$$

$$n = 1, 2, ... =$$
 number of 'degrees of
freedom' (dof)

$$E[z] = n, \quad V[z] = 2n.$$

For independent Gaussian X_i , i = 1, ..., n, means μ_i , variances σ_i^2 ,

$$z = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2} \quad \text{follows } \chi^2 \text{ pdf with } n \text{ dof}$$

Example: goodness-of-fit test variable especially in conjunction with method of least squares.

G. Cowan

Statistical Methods in Particle Physics

Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. X is defined by

$$f(x; \Gamma, x_0) = \frac{1}{\pi} \frac{\Gamma/2}{\Gamma^2/4 + (x - x_0)^2}$$
$$(\Gamma = 2, x_0 = 0 \text{ is the Cauchy pdf.})$$
$$F[x] \text{ not well defined, } V[x] \to \infty.$$
$$K_0 = \text{mode (most probable value)}$$
$$\Gamma = \text{full width at half maximum}$$

Example: mass of resonance particle, e.g. ρ , K^{*}, ϕ^0 , ... Γ = decay rate (inverse of mean lifetime)

T

Landau distribution

For a charged particle with $\beta = V/C$ traversing a layer of matter of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

Statistical Methods in Particle Physics

Landau distribution (2)

4 (keV⁻¹) (a)B=0.4З Long 'Landau tail' β=0.6 $f(\Delta;\beta)$ β=0.95 2 all moments ∞ \rightarrow β=0.999 1 0 2 3 0 Δ (keV) Δ_{mp} (keV) 4 (b) Mode (most probable З value) sensitive to β , 2 \rightarrow particle i.d. 1 0 102 10⁻¹ 10³ 104 10 1

Statistical Methods in Particle Physics

βγ

Why not make your own random variables?

- a free & powerful utility: ROOT http://root.cern.ch/
- some frequently used random variables by ROOT
 - flat on [0,1]
 - Gaussian
 - Exponential
 - Poisson

and so on...

xl = rl.Rndm(); x2 = r2.Gaus(0.0,1.0); x3 = r3.Exp(1.0); x4 = r4.Poisson(3.0);

some theorems, laws...
the Law of Large Numbers

• Suppose you have a sequence of indep't random variables *x_i*

- with the same mean μ
- and variances σ_i^2
- but otherwise distributed "however"
- the variances are not too large

$$\lim_{N \to \infty} (1/N^2) \sum_{i=1}^N \sigma_i^2 = 0 \tag{1}$$

Then the average $\overline{x}_N = (1/N) \sum_i x_i$ converges to the true mean μ

- (Note) What if the condition (1) is finite but non-zero?
 - \Rightarrow the convergence is "almost certain" (*i.e.* the failures have measure zero)

In short, if you try many times, eventually you get the true mean!

the Central Limit Theorem

• Suppose you have a sequence of indep't random variables *x_i*

- with means μ_i and variances σ_i^2
- but otherwise distributed "however"
- and under certain conditions on the variances

The sum $S = \sum_{i} x_i$ converges to a Gaussian

$$\lim_{N \to \infty} \frac{S - \sum \mu_i}{\sqrt{\sum \sigma_i^2}} \to \mathcal{N}(0, 1)$$
(2)

- (Note) important not to confuse LLN with CLT
 - **LLN**: with enough samples, the average \rightarrow the true mean
 - **CLT**: if you put enough random numbers into your processor, the distribution of their average $\to \mathcal{N}(0,1)$

Statistics/Thomas R. Junk/TSI July 2009

more examples of CLT at work

the Neyman-Pearson Lemma

We will explain it later when we discuss the "critical region" ...

Particle identification with the atc_pid class is based on the likelihood of the detector response being due to an hypothesized signal particle species, compared to the likelihood for an assumed background particle species. This is expressed as a likelihood ratio

$$Prob(i:j) = \frac{P_i}{P_i + P_j} \qquad P_i = P_i^{dE/dx} \times P_i^{TOF} \times P_i^{ACC}$$

where P_i is the particle-ID likelihood calculated for the signal particle species and P_j for the background particle species; *i* and *j* can be any of five particle species, e, μ, π, K and *p*. Clearly Prob(i : j) is distributed on the interval [0, 1], and we usually think of it as

the Wilk's theorem

We will encounter it later when we discuss the "likelihood ratio" ...

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

BY S. S. WILKS

By applying the principle of maximum likelihood, J. Neyman and E. S. Pearson² have suggested a method for obtaining functions of observations for testing what are called *composite statistical hypotheses*, or simply *composite*

We can summarize in the

Theorem: If a population with a variate x is distributed according to the probability function $f(x, \theta_1, \theta_2 \cdots \theta_h)$, such that optimum estimates $\tilde{\theta}_i$ of the θ_i exist which are distributed in large samples according to (3), then when the hypothesis H is true that $\theta_i = \theta_{0i}$, i = m + 1, m + 2, \cdots h, the distribution of $-2 \log \lambda$, where λ is given by (2) is, except for terms of order $1/\sqrt{n}$, distributed like χ^2 with h - mdegrees of freedom.

...

¹ Presented to the American Mathmatical Society, March 26, 1937.

Hypothesis Testing

Remember?

Two approaches

Relative frequency

Consider a set S with subsets A, B, ...

For all $A \subset S, P(A) \ge 0$ P(S) = 1If $A \cap B = \emptyset, P(A \cup B) = P(A) + P(B)$

A, B, ... are outcomes of a repeatable experiment Frequentist $P(A) = \lim_{n \to \infty} \frac{\text{times outcome is } A}{n}$ $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Subjective probability

A, B, ... are hypotheses (statements that are true or false) Bayesian P(A) = degree of belief that A is true

Frequentist approach is, in general, easy to understand, but some HEP phenomena are best expressed by subjective prob., e.g. systematic uncertainties, prob(Higgs boson exists), ...

Bayes' theorem

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \xrightarrow{P(B|A)} P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \text{ and } P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$P(A|B) = P(I^{P(A|B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A \cap B) = P(I^{P(A|B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B)P(A|B)P(B)P(B)$$
• First published (posthumous) by Rev. Thom
An essay towards solving a problem in the doctor
Phil. Trans. R. Soc. 53 (1763) 370.

e

P, Conditional P, and Derivation of Bayes' Theorem in Pictures

Bayesian probability: tossing a coin

- suppose I stand to win or lose money in a game of chance
- my companion gives me a coin to use in the game
- do I trust the coin?
- what is P(fair coin)?
- frequentist answer:
 - toss the coin n times
 - $P(\text{heads}) = \lim_{n \to \infty} n_H / n$
 - make a complicated statement about the results, which is only indirectly about whether the coin is fair (see Lec.2 ...)
- but I can only test the coin with five throws:
 - ▶ I get 4H, 1T
 - do I trust the coin?
- frequentist answer based on these 5 trials: not much info
- Bayesian answer depends on your prior belief ...
- > assume for illustration that a bad coin has P(heads) = 0.75
- a proper analysis would involve integrating over priors, etc.

Bayesian probability: interpreting the coin tosses

Likelihoods:

$$P((4H,1T) \mid fair) = 0.1563$$

 $P((4H,1T) \mid bad) = 0.3955$

Priors:

$$P(fair | GG) = 0.95$$

 $P(bad | GG) = 0.05$

Posterior:

$$P(\text{fair} \mid (4H, 1T), \text{GG}) = \frac{P((4H, 1T) \mid \text{fair}) \cdot P(\text{fair} \mid \text{GG})}{\sum_{i} P((4H, 1T) \mid i) \cdot P(i \mid \text{GG})}$$
$$= \frac{0.1563 \cdot 0.95}{0.1563 \cdot 0.95 + 0.3955 \cdot 0.05}$$
$$= 0.882$$

SQ (~

Bayesian probability: interpreting the coin tosses

Likelihoods:

$$P((4H,1T) \mid fair) = 0.1563$$

 $P((4H,1T) \mid bad) = 0.3955$

Priors:

$$P(fair | BG) = 0.50$$

 $P(bad | BG) = 0.50$

Posterior:

$$P(\text{fair} \mid (4H, 1T), \text{BG}) = \frac{P((4H, 1T) \mid \text{fair}) \cdot P(\text{fair} \mid \text{BG})}{\sum_{i} P((4H, 1T) \mid i) \cdot P(i \mid \text{BG})}$$
$$= \frac{0.1563 \cdot 0.50}{0.1563 \cdot 0.50 + 0.3955 \cdot 0.50}$$
$$= 0.283$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Frequentist statistics – general philosophy

• In frequentist statistics, probabilities such as

P(Higgs boson exists)

 $P(0.117 < \alpha_s < 0.121)$

are either 0 or 1, but we don't have the answer

Bayesian statistics – general philosophy

- In Bayesian statistics, interpretation of probability is extended to the **degree of belief** (*i.e.* subjective).
- suitable for **hypothesis testing** (but no golden rule for priors)

probability of the data assuming hypothesis *H* (the likelihood) prior probability, i.e., before seeing the data $P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) dH}$ posterior probability, i.e., after seeing the data over all possible hypotheses

• can also provide more natural handling of non-repeatable things: *e.g.* systematic uncertainties, *P*(Higgs boson exists)

Hypothesis testing

- A hypothesis *H* specifies the probability for the data (*shown symbolically as x here*),
 often expressed as a function f(x|H)
- The measured data \vec{x} could be anything:
 - * observation of a single particle, a single event, or an entire experiment
 - * uni-/multi-variate, continuous or discrete
- the two kinds:
 - * simple (or "point") hypothesis $-f(\vec{x}|H)$ is completely specified
 - * composite hypothesis *H* contains unspecified parameter(s)
- The probability for \vec{x} given H is also called the likelihood of the hypothesis, written as $L(\vec{x}|H)$

Hypothesis test

- Consider e.g. a simple hypothesis H_0 and an alternative H_1
- A (frequentist) test of H_0 :

Specify a critical region w of the data space Ω such that, assuming H_0 is correct, there is no more than some (small) probability α to observe data in w

 $P(\vec{x} \in w | H_0) \le \alpha$

- α : "size" or "significance level" of the test
- If \vec{x} is observed within w, we reject H_0 with a confidence level 1α

Hypothesis test

- In general, \exists an ∞ number of possible critical regions that give the same significance level α
- Usually, we place the critical region where there is a low probability α for $\vec{x} \in w$ if H_0 is true, but high if the alternative (H_1) is true

Tet $t(x_1,\ldots,x_n) = t_{\text{cut}}$

• The boundary surface of the critical region for an *n*-dim. data space can be defined by an equation of the form:

 $t(x_1,\cdots,x_n)=t_c$

where $t(x_1, \dots, x_n)$ is a scalar **test statistic**.

- For the test statistic *t*, we can work out the PDFs $g(t|H_0)$, $g(t|H_1)$, etc.
- Decision boundary is now given by a signle 'cut' on *t*, thus defining the critical region
 ⇒ for an *n*-dim. data space, the problem is reduced to a 1-dim. problem

 $g(t|H_0), g(t|H_1), \ldots$

Type-I, Type-II errors

- Rejecting H₀ when it is true is called the Type-I error
 (Q) Given the significance α of the test, what is the maximum probability of Type-I error?
- We might also accept H₀ when it is indeed false, and an alternative H₁ is true. This is called the Type-II error
 The probability β of Type-II error:

$$P(\vec{x} \in \Omega - w | H_1) = \beta$$

 $1 - \beta$ is called the **power** of the test with respect to H_1

Two possible errors

	$H_{_0}$ chosen	H_1 chosen
H _o true	Correct decision, Prob = $1-\alpha$	T <mark>ype I error</mark> , Prob = α
H ₁ true	T <mark>ype II error</mark> , Prob = β	Correct decision, Prob = $1-\beta$

Optimal decision: minimize β for given α

- The size of the test is $Pr_{\alpha}(Y \in R_{\alpha}) = \alpha$.
- The power of the test is $Pr_1(Y \in R_{\alpha})=1-\beta$.

exercise on Type-I, II errors

Since $B \to K^* \gamma$ has much higher branching fraction than $B \to \rho \gamma$, the former can be a serious background to the latter. It is crucial to understand the "efficiency" and "fake rate" of K/π identification system of your experiment in this study. The figure below shows the $M_{K\pi}$ invarianbt mass distribution, where one of the pion mass (in $\rho^0 \to \pi^+\pi^-$ decay) is replaced by the Kaon mass, for the $B^0 \to \rho^0 \gamma$ signal candidates (Belle, PRL 2008).

Express the following observables in Type-I & Type-II errors. *What are H*₀ & *H*₁*, for each case?*

- $f_{\pi^+ \to K^+}$ = probability of misidentifying a π^+ as a K^+
- $f_{K^+ \to \pi^+}$ = probability of misidentifying a K^+ as a π^+
- ϵ_{K^+} = prob. of identifying a K^+ correctly as a K^+
- ϵ_{π^+} = prob. of identifying a π^+ correctly as a π^+

Probability $P(H|\vec{x})$

• In the frequentist approach, we do not, in general, assign probability of a hypothesis itself.

Rather, we compute the probability to accept/reject a hypothesis assuming that it (or some alternative) is true.

• In Bayesian, on the other hand, probability of any given hypothesis (*degree of belief*) could be obtained by using the Bayes' theorem:

$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H')\pi(H')dH'}$$

which depends on the prior probability $\pi(H)$

How to choose an optimal test statistic

• Use Neyman-Pearson lemma

For a test of size α of the simple hypothesis H_0 , to obtain the highest power w.r.t. the simple alternative H_1 , choose the critical region w such that the likelihoot ratio satisfies

$$\frac{P(\vec{x}|H_1)}{P(\vec{x}|H_0)} \ge k$$

everywhere in *w* and is < k elsewhere, where *k* is a constant chosen for each pre-determined size α .

• Equivalently, the optimal scalar test statistic is

 $t(\vec{x}) = P(\vec{x}|H_1) / P(\vec{x}|H_0)$

(Note) Any monotonic function of this leads to the *same test*.

Particle identification with the atc_pid class is based on the likelihood of the detector response being due to an hypothesized signal particle species, compared to the likelihood for an assumed background particle species. This is expressed as a likelihood ratio

$$Prob(i:j) = \frac{P_i}{P_i + P_j} \qquad P_i = P_i^{dE/dx} \times P_i^{TOF} \times P_i^{ACC}$$

where P_i is the particle-ID likelihood calculated for the signal particle species and P_j for the background particle species; *i* and *j* can be any of five particle species, e, μ, π, K and *p*. Clearly Prob(i : j) is distributed on the interval [0, 1], and we usually think of it as

A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given size (eg. probability under H₀ is 1- α)

A short proof of Neyman-Pearson

Now consider a variation on the contour that has the same size

A short proof of Neyman-Pearson

Now consider a variation on the contour that has the same size (eg. same probability under H_0)

Together they give...

the *p*-value

• With *p*-value, we express the level of agreement b/w data and H p = probability, under assumption of H, to observe data with equal or lesser compatibility with H, in comparison to the data we obtained

 \neq the probability that H is true \bigwedge

- In frequentist statistics, we don't talk about P(H). In Bayesian, however, we determine $P(H|\vec{x})$ using the Bayes' theorem $\Leftarrow \text{ depending on the prior probability } \pi(H) \qquad P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) \, dH}$ • For now, we stick with the frequentist interpretation of the *p*-value

Significance from the *p*-value

Often we quote the significance Z, for a given p-value

• *Z* = the number of standard dev. that a Gaussian random variable would fluctuate in one direction to give the same *p*-value

 $p = \int_{Z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx = 1 - \Phi(Z)$ 1 - TMath::Freq

 $Z = \Phi^{-1}(1-p)$

TMath::NormQuantile

(Ex) Z = 5 (a "5-sigma effect") $\Leftrightarrow p = 2.9 \times 10^{-7}$

Remember?

Gaussian (Normal) distribution

Table 36.1: Area of the tails α outside $\pm \delta$ from the mean of a Gaussian distribution.

(Ex) Z = 5 (a "5-sigma effect") $\Leftrightarrow p = 2.9 \times 10^{-7}$

p-value example: testing whether a coin is 'fair' Probability to observe *n* heads in *N* coin tosses is binomial:

$$P(n; p, N) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

Hypothesis *H*: the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with *H* relative to n = 17 is: n = 17, 18, 19, 20, 0, 1, 2, 3. Adding up the probabilities for these values gives:

P(n = 0, 1, 2, 3, 17, 18, 19, or 20) = 0.0026.

i.e. p = 0.0026 is the probability of obtaining such a bizarre result (or more so) 'by chance', under the assumption of *H*.

The significance of an observed signal

Suppose we observe *n* events; these can consist of:

 $n_{\rm b}$ events from known processes (background) $n_{\rm s}$ events from a new process (signal)

If n_s , n_b are Poisson r.v.s with means *s*, *b*, then $n = n_s + n_b$ is also Poisson, mean = s + b:

$$P(n; s, b) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

Suppose b = 0.5, and we observe $n_{obs} = 5$. Should we claim evidence for a new discovery?

Give *p*-value for hypothesis
$$s = 0$$
:
p-value = $P(n \ge 5; b = 0.5, s = 0)$
= $1.7 \times 10^{-4} \neq P(s = 0)!$

Cargese 2012 / Statistics for HEP / Lecture 1

The significance of an observed signal

Suppose we observe *n* events; these can consist of:

 $n_{\rm b}$ events from known processes (background) $n_{\rm s}$ events from a new process (signal)

If n_s , n_b are Poisson r.v.s with means *s*, *b*, then $n = n_s + n_b$ is also Poisson, mean = s + b:

$$P(n;s,b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$

Suppose b = 0.5, and we observe $n_{obs} = 5$. Should we claim evidence for a new discovery?

Give *p*-value for hypothesis
$$s = 0$$
:
p-value = $P(n \ge 5; b = 0.5, s = 0)$
= $1.7 \times 10^{-4} \ne P(s = 0)!$

Cargese 2012 / Statistics for HEP / Lecture 1

1983 프로야구 챔피언 해태 타이거즈 선발 타순

0	•
	1117
	NLL
~	

			타귤	쑬두귤	장타율	좀던	타염	노루
1	김일권	CF	.275	.345	.364	6	26	48
2	서정환	SS	.257	.320	.339	3	34	13
3	김성한	1B	.327	.401	.448	7	40	13
4	김봉연	DH	.280	.371	.552	22	59	2
5	김종모	LF	.350	.404	.524	11	44	7
6	김준환	RF	.248	.308	.362	10	43	11
7	김무종	С	.262	.313	.453	12	60	2
8	양승호	3B	.236	.292	.309	2	11	3
9	차영화	2B	.266	.308	.323	1	23	16

(observation) Six out of 9 starting hitters have family name 'Kim'.

- (fact) According to census, ~20% of all Koreans have family name 'Kim'.
- (Hypothesis to test) The manager of 1983 Tigers (himself a 'Kim') has a bias toward players with family name 'Kim'.
Model-independent test?

- In general, we cannot find a single critical region that gives the maximum power for all possible alternatives (no "uniformly most powerful" test)
- In HEP, we often try to construct a test of the Standard Model as H₀ (or sometimes called "background only")
 such that we have a well specified *false discovery rate* α (=prob. to reject H₀ when it is true),

and high power w.r.t. some interesting alternative H_1 , e.g. SUSY, Z', etc.

• But, there is no such thing as a *model-independent* test. Any statistical test will inevitably have high power w.r.t. some alternatives and less for others

Intervals

Measurement with errors

Let's say we are doing a single measurement

$$x = a \pm b$$

Frequentist interpretation

Repeating the measurement many times under identical conditions ("ensemble"), in 68.3% of those results, the true value of x will lie between *a* - *b* and *a* + *b*

Solution Result of each measurement is a sampling from a Gaussian distribution with mean μ and width σ

- We may not know μ
- We have some idea about σ -- experimental sensitivity

when $\mu \pm \sigma$ is not enough...

If the PDF of the estimator is not Gaussian, or if there are physical boundaries on the possible values of the parameter, one usually quotes an interval given a confidence level.

Confidence interval from inversion of a test

- Suppose a model contains a parameter μ
 Which values are consistent with data and which disfavored?
- Carry out a test of size α for all values of μ .

 \Rightarrow The values that are *not rejected* constitutes a **confidence interval** for μ at confidence level $CL = 1 - \alpha$.

• Probability of rejecting true value of α is $\leq \alpha$

 \therefore by construction the confidence interval will contain the true value of μ with probability $\geq 1 - \alpha$.

- * The interval depends on the choice of the test (critical region).
- * If the test is formulated in terms of a *p*-value, p_{μ} , then the confidence interval represents those values of μ for which $p_{\mu} > \alpha$.
- * To find the end points of the interval, set $p_{\mu} = \alpha$ and solve for μ .

a Bayesian procedure for intervals

$$1 - \alpha = \int_{\theta_{\text{lo}}}^{\theta_{\text{up}}} p(\theta | \boldsymbol{x}) \, d\theta$$

If the physical value is non-negative, one may choose a prior:

Likelihood for *s*, given *b*, is

$$\pi(s) = \begin{cases} 0 & s < 0\\ 1 & s \ge 0 \end{cases}$$

$$P(n|s) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

a Bayesian procedure for intervals

$$1 - \alpha = \int_{\theta_{\text{lo}}}^{\theta_{\text{up}}} p(\theta | \boldsymbol{x}) \, d\theta$$

If the physical value is non-negative, one may choose a prior:

$$\pi(s) = \begin{cases} 0 & s < 0\\ 1 & s \ge 0 \end{cases}$$

Likelihood for *s*, given *b*, is

 $P(n|s) = \frac{(s+b)^n}{n!}e^{-(s+b)}$

79

If what we seek is of a very low (or no) signal, interval \rightarrow UL Then, $\int_{a}^{s_{up}} P(n|s) \pi(s) d$

$$1 - \alpha = \int_{-\infty}^{sup} p(s|n)ds = \frac{\int_{-\infty}^{\infty} P(n|s) \pi(s) \, ds}{\int_{-\infty}^{\infty} P(n|s) \pi(s) \, ds}$$

$$F_{\chi^2}^{-1}$$
: inverse of the CDF $\rightarrow s_{up} = \frac{1}{2} F_{\chi^2}^{-1} \left[p, 2(n+1) \right] - b$

(Ex) UL on Poisson parameter

- Consider again the case of observing n ~ Poisson(s + b). Suppose b = 4.5 and n_{obs} = 5. Find upper limit on s at 95% CL.
- Relevant alternative is s = 0, resulting in critical region at low n.
- The *p*-value of hypothesized *s* is $P(n \le n_{obs}; s, b)$. Therefore, the upper limit s_{up} at $CL = 1 - \alpha$ is obtained from

$$\alpha = P(n \le n_{\text{obs}}; s_{\text{up}}, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s_{\text{up}} + b)^n}{n!} e^{-(s_{\text{up}} + b)}$$
$$s_{\text{up}} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\text{obs}} + 1)) - b$$
$$= \frac{1}{2} F_{\chi^2}^{-1} (0.95; 2(5 + 1)) - 4.5 = 6.0$$

Y. Kwon (Yonsei Univ.)

Frequentist "confidence intervals"

on repeated measurements

Remember frequentist approach is always about repeated measurements!

"confidence interval"

= intervals constructed to include the true value of the parameter with a probability \geq (*a specified value*)

Frequentist "confidence intervals"

Consider a pdf f(x;\theta) $P(x_1 < x < x_2;\theta) = 1 - \alpha = \int_{x_1}^{x_2} f(x;\theta) dx$

- *x* : outcome of an experiment
- $\boldsymbol{\theta}$: unknown parameter for which we set the interval

Possible experimental values x

Coincidence of frequentist and Bayesian intervals

If the expected background is zero, the Bayesian upper limit (for a Poisson RV) becomes equal to the limit determined by frequentist approach.

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} \left[p, 2(n+1) \right] - b$$
$$= \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n+1))$$

http://pdg.lbl.gov/2013/reviews/rpp2013-rev-statistics.pdf

Parameter Estimation

Basics of parameter estimation

• The parameters of a PDF are constants characterizing its shape, e.g.

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}$$

where θ is the parameter, while *x* is the random variable.

Suppose we have a sample of observed values, *x*.
 We want to find some function of the data to *estimate* the parameter(s): *θ*(*x*).
 Often *θ* is called an *estimator*.

Properties of estimators

• If we were to repeat the entire measurement, the set of estimates would follow a PDF:

- We want small (or zero) bias (\Rightarrow syst. error): $b = E[\hat{\theta}] \theta$
- and we want a small variance (\Rightarrow stat. error): $V[\hat{\theta}]$

 $b = E[\theta]$

 $V[\hat{\theta}]$

Bias vs. Consistency

The likelihood function

- Suppose the entire result of an experiment (*set of measurements*) is a collection of numbers \vec{x} , and suppose the joint PDF for the data \vec{x} is a function depending on a set of parameters $\vec{\theta}$: $f(\vec{x}; \vec{\theta})$
- Evaluate this function with the measured data \vec{x} , regarding this as a function of $\vec{\theta}$ only. This is the **likelihood function**.

 $L(\vec{\theta}) = f(\vec{x}; \vec{\theta}) \ (\vec{x}, \text{fixed})$

The likelihood function for i.i.d. data

i.i.d. = independent and identically distributed

Consider *n* independent observations of *x*: *x*₁, · · · , *x_n*, where *x* follows *f*(*x*, *θ*).
 The joint PDF for the whole data sample is:

$$f(x_1, \cdots, x_n; \vec{\theta}) = \prod_{i=1}^n f(x_i; \vec{\theta})$$

• In this case, the likelihood function is

$$L(\vec{\theta}) = \prod_{i=1}^{n} f(x_i; \vec{\theta}) \quad (x_i \text{ constant})$$

So we define the max. likelihood (ML) estimator(s) to be the parameter value(s) for which the L becomes maximum.

ML estimator example: fitting to a straight line

- Suppose we have a set of data:
 (x_i, y_i, σ_i), i = 1, · · · , n.
- Modeling: y_i are independent and follow $y_i \sim G(\mu(x_i), \sigma_i)$ (*G*: Gaussian) where $\mu(x_i)$ are modelled as $\mu(x; \theta_0, \theta_1) = \theta_0 + \theta_1 x$

Assume x_i and σ_i are known.

• Goal: to estimate θ_0

Here, let's suppose we don't care about θ_1 (an example of a *nuisance parameter*)

ML fit with Gaussian data

• In this example, the *y_i* are assumed independent, so that likelihood function is a product of Gaussians:

$$L(\theta_0, \theta_1) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left[-\frac{1}{2} \frac{(y_i - \mu(x_i; \theta_0, \theta_1))^2}{\sigma_i^2}\right]$$

• Then maximizing *L* is equivalent to minimizing

$$\chi^{2}(\theta_{0},\theta_{1}) = -2\ln L(\theta_{0},\theta_{1}) + C = \sum_{i=1}^{n} \frac{(y_{i} - \mu(x_{i};\theta_{0},\theta_{1}))^{2}}{\sigma_{i}^{2}}$$

i.e., for Gaussian data, ML fitting is the same as the method of least squares

Wilk's theorem

ML fit or Least-square fit?

- Solution Consider we have a random variable $x \in [0, 3]$, and a distribution f(x).
- In a series of measurements, we obtained
 - 9 events in [0,1), 10 events in [1,2), and 8 events in [2,3]
 - We have a model of uniform f(x), and would like to estimate the mean value of $\int f(x) dx$ for each histogram bin.
- Run a thought-experiment, comparing
 - maximum likelihood method, and least-square method
 - Do they give the same result?

Bayesian likelihood function

• Suppose our *L*-function contains two parameters θ_0 and θ_1 , where we have some knoweldege about the prior probability on θ_1 from previous measurements:

$$\pi(\theta_0, \theta_1) = \pi_0(\theta_0)\pi_1(\theta_1)$$
$$\pi_0(\theta_0) = \text{const.}$$
$$\pi_1(\theta_1) = \frac{1}{\sqrt{2\pi}\sigma_p} e^{-(\theta_1 - \theta_p)^2/2\sigma_p^2}$$

• Putting this into the Bayes' theorem gives the posterior probability:

$$p(\theta_0, \theta_1 | \vec{x}) \propto \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i}} e^{-(y_i - \mu(x_i; \theta_0, \theta_1))^2 / 2\sigma_i^2} \pi_0 \frac{1}{\sqrt{2\pi\sigma_p}} e^{-(\theta_1 - \theta_p)^2 / 2\sigma_p^2}$$

• Then, $p(\theta_0 | \vec{x}) = \int p(\theta_0, \theta_1 | \vec{x}) \ d\theta_1$

Feb.19, 2013

with alternative priors

Suppose we don't have a previous measurement of θ₁ but rather a theorist saying that θ₁ should be > 0 and not too much greater than, say, 0.1 or so. In that case, we may try modeling the prior for θ₁ as something like

$$\pi_1(heta_1) = rac{1}{ au} e^{- heta_1/ au}, \; heta_1 \ge 0, \; au = 0.1$$

• From this we obtain (numerically) the posterior PDF for θ_0

• This plot summarizes all knowledge about θ_0 .

other advanced topics

- Inuisance parameters & systematic uncertainties
- \bigcirc spurious exclusion \rightarrow the CL_s procedure
- look-elsewhere effect

Systematic uncertainties?

In statistics, they call it the "nuisance parameter"

All Dictionary Thesaurus Apple Wikipedia

nui•sance |'n(y)oōsəns|

noun

- a person, thing, or circumstance causing inconvenience or annoyance : an unreasonable landlord could become a nuisance | I hope you're not going to make a nuisance of yourself.
 - (also private nuisance) Law an unlawful interference with the use and enjoyment of a person's land.

Law see PUBLIC NUISANCE.

ORIGIN late Middle English (in the sense [injury, hurt]): from Old French, 'hurt,' from the verb nuire, from Latin nocere 'to harm.'

Nuisance parameters

• In general our model of the data is *not perfect*

model: $L(x|\theta) = \theta x$ truth: $L(x|\theta) = \theta x + \alpha x^2 + \beta x^3 + \cdots$

- can improve model by including additional adjustable parameters: $L(x|\theta) \rightarrow L(x|\theta, \nu)$
- Nuisance parameter ↔ systematic uncertainty
 Some point in the parameter space of the enlarged model must be "true"
- Presence of nuisance parameter(s) decreases sensitivity of analysis to the parameter of interest (e.g. larger variance of estimate).

p-values with nuisance parameters

• Suppose we have a statistic *q* to test a hypothesized value of a parameter θ , such that the *p*-value of θ is

$$p_{ heta} = \int_{q_{ heta}, \mathrm{obs}}^{\infty} f(q_{ heta} | heta,
u) \, dq_{ heta}$$

- But what value of ν should we use for $f(q_{\theta}|\theta, \nu)$?
- In the large-sample limit, $f(q_{\theta}|\theta, \nu)$ becomes independent of the nuisance parameters a feature of statistics based on the profile likelihood ratio
- But in general for finite sample this is not true.
- One may therefore be unable to reject some θ values if all values of ν shall be considered. (Interval for θ "overcovers").

The profile likelihood ratio

• Base significance test on the profile likelihood ratio

- the likelihood ratio of point hypotheses gives optimal test (by Neyman-Pearson lemma)
- the statistic above is nearly optimal
- Advantage of $\lambda(\mu)$ in large sample limit, $f(-2 \ln \lambda(\mu) | \mu)$ approaches a χ^2 pdf for n = 1 (by Wilk's theorem)

- Sometimes, the effect of a given hypothesized μ is very small relative to the null (μ =0) prediction
 - This means that the distributions $f(q_{\mu} | \mu)$ and $f(q_{\mu} | 0)$ will be almost the same.

Solution In contrast, for a high-sensitivity test, the two pdf's -- $f(q_{\mu} | \mu)$ and $f(q_{\mu} | 0)$ -- are well separated

In this case, the power is substantially higher than $1-\alpha$. Use this 'power' as a measure of the sensitivity.

Consider again the case of low-sensitivity

- This means that one excludes hypotheses to which one has essentially no sensitivity (e.g. m_H = 1000 TeV)
- It is called the "spurious exclusion"

spurious = not being what it claims to be

- The problem of excluding values to which one has no sensitivity is known for a long time
- In the 1990s this problem was re-examined for the LEP Higgs search, e.g.
 T. Junk, NIM A 434, 435 (1999); A.L. Read, J. Phys. G 28, 2693 (2002).
 and led to the "CL_s" procedure for upper limits

The CL_s procedure

• In the CL_s formulation, one tests both the $\mu = 0$ (*b*) and $\mu > 0$ (*s* + *b*) hypotheses with the same statistic $Q = -2 \ln L_{s+b}/L_b$

The CL_s procedure

• The CL_s prescription is to base the test on the usual *p*-value (CL_{s+b}), but rather to divide this by $CL_b(=1-p_b)$

$$\mathrm{CL}_{s}\equiv rac{\mathrm{CL}_{s+b}}{\mathrm{CL}_{b}}=rac{p_{s+b}}{1-p_{b}}$$

- Reject s + b hypothesis if $CL_s < \alpha$
- Reduces "effective" *p*-value when the two distributions become close, thus preventing exclusion if sensitivity is low

The CL_s procedure

$$\mathrm{CL}_{s}\equiv rac{\mathrm{CL}_{s+b}}{\mathrm{CL}_{b}}=rac{p_{s+b}}{1-p_{b}}$$

- Reject s + b hypothesis if $CL_s < \alpha$
- Reduces "effective" *p*-value when the two distributions become close, thus preventing exclusion if sensitivity is low

the Look Elsewhere Effect

consider...

Suppose you throw a coin 10 times, and you've got 10 heads, zero tails.

- It's very unusual.
- Can you quantify how unusual this result is?
- In particular, can you say the probability for this kind of peculiarity happening is 1/10²⁴?
 - No! Think why!
- What must then be the correct answer?
Gross and Vitells, EPJC 70:525-530 (2010), arXiv:1005.1891

Look-Elsewhere Effect

Suppose a model for a mass distribution allows for a peak at a mass *m* with amplitude μ

 \bigcirc and the data show a bump at a mass m_0

How consistent is this with the no-bump ($\mu = 0$) hypothesis?

Local *p*-value

- First, suppose that the mass peak value m_0 was known a priori.
- Test consistency of bump with the $\mu = 0$ hypothesis with e.g. *L*-ratio

$$t_{\rm fix} = -2\ln\left(\frac{L(0,m_0)}{L(\mu,m_0)}\right)$$

where "fix" indicates that the mass peak value is fixed to m_0 .

• The resulting *p*-value

$$p_{\text{local}} = \int_{t_{\text{fix,obs}}}^{\infty} f(t_{\text{fix}}|0) \, dt_{\text{fix}}$$

gives the probability to find a value of t_{fix} at least as great as the observed value at the specific mass m_0 , and is called the local *p*-value.

Global *p*-value

- Now, suppose we did not know where to expect a peak. In other words, the signal can be found at every value of *m*.
- What we want is the probability to find a peak at least as significant as the one observed **anywhere** in the distribution
- For this, include the mass as an *adjustable parameter* in the fit, then test significance of peak using

$$\begin{split} t_{\rm float} &= -2\ln\frac{L(0)}{L(\mu,m)} & \text{Note: m does not appear in the} \\ \mu &= 0 \text{ model} \end{split}$$
$$p_{\rm global} &= \int_{t_{\rm float,obs}}^{\infty} f(t_{\rm float}|0) \ dt_{\rm float} \end{split}$$

$t_{\rm fix}$ vs. $t_{\rm float}$

- For a sufficiently large data sample, $t_{\rm fix} \sim \chi^2$ for 1 deg. of freedom (*Wilk's theorem*)
- For t_{float} there are two adjustable parameters, μ and m, and naively Wilk's theorem says $t_{\text{float}} \sim \chi^2$ for 2 d.o.f.

But, Wilk's theorem does not hold in the floating mass case because one of the parameters (*m*) is not defined in the $\mu = 0$ model.

 \therefore getting t_{float} distribution is more difficult.

Approximate correction for LEE

- Need to related the *p*-values for the fixed and floating-mass analyses (at least approximately)
- (Gross & Vitells) The *p*-values are approximately related by

 $p_{\text{global}} \approx p_{\text{local}} + \langle N(c) \rangle$

where $\langle N(c) \rangle$ = mean # of *upcrossings* of $-2 \ln L$ in the fit range based on a threshold

$$c = t_{\rm fix} = Z_{\rm local}^2$$

• We may carry out the full MC (time and CPU-consuming) or do fixed-*m* analysis and apply a correction factor (much faster!)

Up-crossings of $-2 \ln L$

 $p_{\text{global}} \approx p_{\text{local}} + \langle N(c) \rangle$ where $\langle N(c) \rangle = \text{mean } \# \text{ of } upcrossings \text{ of } -2 \ln L \text{ in the fit}$ range based on a threshold $c = t_{\text{fix}}$

- What is 'up-crossing'? How can we obtain this number?
- With high threshold *c*, you need a huge MC sample to estimate *p*_{global}.
- For an econc can be estim $\langle N(c) \rangle \approx \langle N(c_0) \rangle e^{-(c-c_0)/2}$ much lower threshold c_0 :

$$\langle N(c) \rangle \approx \langle N(c_0) \rangle e^{-(c-c_0)/2}$$

so we don't need a huge computing resource

Examples to test what you've learned

what to make sense of m_H plots, statistically

Y. Kwon (Yonsei Univ.)

how to read the green & yellow plots

- For every (assumed) value of m_H , we want to find the CL_s upper limit on $\mu \equiv \sigma(H)/\sigma_{SM}(H)$ (solid curve)
- Also shown is the 'expected upper limit', determined for each assumed m_H value, under the assumption that we see no excess above background.

how to read the p_0 plots

- The local p_0 values for a SM Higgs boson as a function of assumed m_H .
- The minimal p_0 (observed) is 2×10^{-6} at $m_H = 126.5$ GeV. \Rightarrow local significance of $4.7\sigma \rightarrow$ reduced to 3.6σ after LEE

Y. Kwon (Yonsei Univ.)

how to read the "blue band" plots

• $\hat{\mu}$ vs. m_H where $\hat{\mu}$ is the signal strength (= σ/σ_{SM}) estimated by likelihood method¹. The blue band corresponds to approx. $\pm 1\sigma$ error bar for μ .

¹Some details are skipped, for the sake of simplicity

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis

Now that you have the language to talk about stat. interpretation of HEP results (e.g. LHC), it's your job to explore & enjoy them!

Thank you!