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apologies
freely taking from other people’s lecture slides, w/o properly 
citing the references!

•just a rough list (from which I composed this lecture) is given!

not paying attention to any mathematical rigor at all!

It will be simply impossible to cover “everything” even with the 
extended time of 180 minutes…!

•so, I end up covering just a little fraction of the story, with a 
subjective choice of topics!

Please stop me any time if you don’t follow the story, otherwise 
it will be merely a pointless series of slides.
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References (very rough)
•Glen Cowan @ CERN lectures, July 2011!

 http://www.pp.rhul.ac.uk/~cowan/stat_cern.html 

•Tom Junk @ TRIUMF, July 2009!

•S. T’Jampens @ FAPPS ’09, Oct. 2009!

•mini-reviews on Probability & Statistics in RPP (PDG)!

http://pdg.lbl.gov/2013/reviews/rpp2013-rev-statistics.pdf 

•...
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Outline
Basic elements!

•some vocabulary!

•Probability axioms!

•some probability distributions!

Two approaches: Freq. vs. Bayesian!

Hypothesis testing!

Parameter estimation!

Other subjects — “nuisance”, “spurious”, “elsewhere”…

4



Basic elements



some vocabulary
random variables, PDF, CDF!

expectation values!

mean, median, mode!

standard deviation, variance, covariance matrix!

correlation coefficients!

...
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Random variables and PDFs
• A random variable is a numerical characteristic assigned to an element of the

sample space; it can be discrete or continuous.

• Suppose outcome of experiments is continuous:

P(x 2 [x, x + dx]) = f(x)dx

) f(x) is the probability density function (PDF) with

Z +1

�1
f(x)dx = 1

• Or, for discrete outcome xi with e.g. i = 1, 2, · · ·

* P(xi) = pi “probability mass function”
*

P
i P(xi) = 1

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014
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Cumulative distribution function (CDF)
• The probability F(x) to have an outcome less than or equal to x is called the

cumulative distribution function (CDF).
Z x

�1
f(x0)dx0 ⌘ F(x) .

Statistical Methods in Particle Physics 11

Cumulative distribution function
Probability to have outcome less than or equal to x is

cumulative distribution function

Alternatively define pdf with

G. Cowan

PDF CDF

CDF
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• Alternatively, we have f(x) = @F(x)/@x.

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014
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Expectation value
g(X), h(X): functions of random variable X

• for discrete X 2 ⌦

E(g) =
X

⌦

P(X) g(X)

• for continuous X 2 ⌦

E(g) =
Z

⌦
dX f(X) g(X)

• E is a linear operator

E[↵g(X) + �h(X)] = ↵E[g(X)] + �E[h(X)]

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014



Examples of expectation values
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some examples of Expectation Values

•
mean – expectation value for the PDF (f(X) or P(Xi))

µ = X = E(X) = hXi =
Z

⌦
dX f(X)X

•
variance – it may not always exist!

�2 = V(X) = E[(X � µ)2]

= E(X2)� [E(X)]2

=

Z

⌦
dX f(X)(X � µ)2

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014



sample mean & sample variance

11

Outline
• n measurements {xi} where xi follows N(µ,⇥)

• sample mean

x =
1
n

nX

i=1

xi ⇤ N
✓
µ,

⇥⌃
n

◆

With more measurements, the estimation of the mean will become more
accurate.

• sample variance

V(x) =
1
n

nX

i=1

(xi � x)2 = x2 � x2

Sample variance approaches ⇥2 for large n.

Y. Kwon (Yonsei Univ.) B+ � ⌧+⌫⌧ & searches for heavy ⌫ at the B-factories Dec.20, 2012 4
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Mean and Variance in 2-D
• Expectation value in 2-D: (X,Y) as RV

E[g(X,Y)] =
ZZ

⌦
dX dY f(X,Y) g(X,Y)

) Extension to higher dimension is straightforward!

•
mean of X

µX = E[X] =
ZZ

⌦
dX dY f(X,Y) X

•
variance of X

�2
X = E[(X � µX)

2] =

ZZ

⌦
dX dY f(X,Y) (X � µX)

2

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014



Covariance matrix

13

Covariance matrix

• Given a n-dimensional random variable ~X = (X1, · · · ,Xn), the
covariance matrix Cij is defined as:

Cij = E[(Xi � µi)(Xj � µj)]

= E[XiXj]� µiµj

• more intuitive is the correlation coefficient, ⇢ij, given by

⇢ij =
Cij

�i�j

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014



properties of covariance matrix
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properties of covariance matrix
• bounded by one: �1  ⇢ij  +1

• for independent variables X,Y: ⇢(X,Y) = 0
But the reverse is not true! (e.g. Y = X2)

• If f(X1, · · · ,Xn) is a multi-dim. Gaussian, then cov(Xi,Xj) gives the tilt of the
ellipsoid in (Xi,Xj)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014



Correlations - 2D examples
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Error propagation on f(x,y)
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(Q) What if x and y are independent?!
!

(HW) Obtain the error on f (x,y) = C x y



Statistics & Probability
Statistics is largely the inverse problem of probability.

• Probability:
Know parameters of the theory ) predict distributions of possible
experimental outcomes

• Statistics:
Know the outcome of an experiment ) extract information about the
parameters and/or the theory

- Probability is the easier of the two – more straightforward.
- Statistics is what we need as HEP analysts.
- In HEP, the statistics issues often get very complex because we know so much

bout our data and need to incorporate all of what we find.

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013

a
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Probability Axioms

18

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 4 

A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional probability: 
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0 1 probability exp/est/test theorems basic prob L/KID Bayesian prob

Probability: P(A|B) �= P(B |A)

An extreme (and personal) case:

I � : all people

I P(woman) = 50%

I P(pregnant | woman) = 3%

I P(pregnant) = 1.5%

I P(woman | pregnant) = 100%

Bruce Yabsley Statistics for Belle: Fundamentals

Note :



0 1 probability exp/est/test theorems basic prob L/KID Bayesian prob

Probability: P(A|B) ⇥= P(B |A)

An extreme (and personal) case:

I � : all people

I P(woman) = 50%

I P(pregnant | woman) = 3%

I P(pregnant) = 1.5%

I P(woman | pregnant) = 100%

Indeed

P(w |p) =
P(p|w) · P(w)

P(p)

Bruce Yabsley Statistics for Belle: Fundamentals

Note :

P(data|theory)	  ≠	  P(theory|data)

P (A|B) 6= P (B|A)a consequence of 



Two interpretations of Probability
Relative frequency!

!

!

!

Subjective probability

21

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 5 

Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 
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I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 

Frequentist	  approach	  is,	  in	  general,	  easy	  to	  understand,	  but	  
some	  HEP	  phenomena	  are	  best	  expressed	  by	  subjective	  prob.,	  
e.g.	  systematic	  uncertainties,	  Prob(Higgs	  boson	  exists),	  ...

Frequentist

Bayesian



some useful distributions



35. Probability 9

Table 35.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic

Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x;a, b) =

{

1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu
a + b

2
(b − a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ,σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√

|V |
exp

[

iµ · u − 1
2uT V u

]

µ Vjk

× exp
[

− 1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)

−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1
1F1(α; α + β; iu)

α
α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1

June 18, 2012 16:20

23



Binomial distribution

24

Given a repeated set of N trials, each of which has probability p of 
“success” (hence 1−p of “failure”), what is the distribution of the 
number of successes if the N trials are repeated over and over?!

!

!

!

•(Ex) events passing a selection cut, with a fixed total N

Statistics/Thomas R. Junk/TSI July 2009 7

Some Probability Distributions useful in HEP

Binomial:

   Given a repeated set of N trials, each of which has

   probability p of “success” and 1 - p of “failure”, what is

   the distribution of the number of successes if the N trials

   are repeated over and over?

! 

Binom(k |N, p) =
N

k

" 

# 
$ 

% 

& 
' p

k
1( p( )

N(k
,    )(k) = Var(k) = Np(1( p)

k is the number of “success” trials

Example: events passing a selection cut, with a fixed total N

where k is the number of success trials



Poisson distribution

• Limit of Binomial when N ! 1 and p ! 0 with Np = µ being finite and
fixed ) Poisson distribution

Statistics/Thomas R. Junk/TSI July 2009 8

Some Probability Distributions useful in HEP

Poisson:

Limit of Binomial when N ! " and p ! 0 with Np = µ finite

! 

Poiss(k | µ) =
e
"µµk

k!
     #(k) = µ

All counting results in HEP are assumed to be Poisson

distributed   

Binomial is formally more correct since the

number of bunch crossings and particles per bunch are

finite -- but very large).

! 

Poiss(k | µ)
k= 0

"

# =1,    $µ

! 

Poiss(k | µ)dµ =1
0

"

#       $k

Normalized to

unit area in

two different senses

µ=6
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"

# =1,    $µ

! 

Poiss(k | µ)dµ =1
0

"

#       $k

Normalized to

unit area in
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µ=6

All counting results in HEP are assumed to be Poisson-distributed

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013

Poisson distribution
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Gaussian (Normal) distribution

35. Probability 9

Table 35.1. Some common probability density functions, with corresponding characteristic functions and
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PDF
CDF

Z
x

�1
f(x)dx =

1

2


1 + erf

✓
x� µp
2�2

◆�
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Gaussian (Normal) distribution

27

24 36. Statistics

36.3.2.4. Gaussian distributed measurements:

An important example of constructing a confidence interval is when the data consists
of a single random variable x that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ,

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
(36.55)

is the probability that the measured value x will fall within ±δ of the true value µ. From
the symmetry of the Gaussian with respect to x and µ, this is also the probability for
the interval x ± δ to include µ. Fig. 36.4 shows a δ = 1.64σ confidence interval unshaded.
The choice δ = σ gives an interval called the standard error which has 1 − α = 68.27% if
σ is known. Values of α for other frequently used choices of δ are given in Table 36.1.

$3 $2 $1 0 1 2 3

f (x; µ,%)

! /2! /2

(x$µ) /%

1$!

Figure 36.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by α = 0.1, are as shown.

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 36.1.

The relation (36.55) can be re-expressed using the cumulative distribution function for
the χ2 distribution as

α = 1 − F (χ2; n) , (36.56)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be obtained from Fig. 36.1 on the
n = 1 curve or by using the ROOT function TMath::Prob.

For multivariate measurements of, say, n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one

requires the full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described

June 18, 2012 16:20
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Table 36.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

in Sections 36.1.2 and 36.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore, the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 36.5, corresponding
to a contour χ2 = χ2

min + 1 or ln L = lnLmax − 1/2. The ellipse is centered about the

estimated values θ̂, and the tangents to the ellipse give the standard deviations of the
estimators, σi and σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (36.57)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the distance σi from the
ellipse’s horizontal center-line at which the ellipse becomes tangent to vertical, i.e., at the
distance ρijσi below the center-line as shown. As ρij goes to +1 or −1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, θj , is known from previous
measurements to a precision much better than σj , so that the current measurement
contributes almost nothing to the knowledge of θj . However, the current measurement of
θi and its dependence on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the value of θi, which
minimizes χ2 at a fixed value of θj , such as the PDG best value. This θi value lies along
the dotted line between the points where the ellipse becomes tangent to vertical, and has
statistical error σinner as shown on the figure, where σinner = (1 − ρ2

ij)
1/2σi. Instead of

the correlation ρij , one reports the dependency dθ̂i/dθj which is the slope of the dotted

line. This slope is related to the correlation coefficient by dθ̂i/dθj = ρij ×
σi
σj

.

As in the single-variable case, because of the symmetry of the Gaussian function
between θ and θ̂, one finds that contours of constant lnL or χ2 cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

lnL(θ) ≥ lnLmax − ∆ lnL , (36.58)

June 18, 2012 16:20
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Statistics/Thomas R. Junk/TSI July 2009 15

Poisson for large µ is Approximately Gaussian of width

                              

! 

" = µ

If, in an experiment

all we have is a 

measurement n, we

often use that to
estimate µ.

We then draw

error bars on the data.

This is just a convention,

and can be misleading.

(We still recommend you

do it, however)
! 

n
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often use that to
estimate µ.

We then draw

error bars on the data.

This is just a convention,

and can be misleading.

(We still recommend you

do it, however)
! 

n

Poisson for large 𝜇 is approximately Gaussian of width � =
p
µ

If in a counting experiment all 
we have is a measurement n, 
we often use this to estimate 𝜇.

We then draw        error bars on 
the data.!
This is just a convention, and 
can be misleading.!
(It is still recommended you do 
it, however.)

p
n
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Not all  Distributions are Gaussian

Track impact

parameter

distribution

for example

Multiple 

scattering --

core: Gaussian;

rare large scatters;

heavy flavor, 

nuclear interactions,

decays (taus in 

this example)

“All models are false.  Some 

  models are useful.”

Core is approximately

Gaussian
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Chi-square (�2) distribution
The chi-square pdf for the continuous r.v. z (z �����is defined by

n 	�����������	�����
���������������
������������

For independent Gaussian xi, i = 1, ..., n, means �i, variances �i
2,

follows �2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.

G. Cowan
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Cauchy (Breit-Wigner) distribution
The Breit-Wigner pdf for the continuous r.v. x is defined by

�� = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] ���

x0 = mode (most probable value)

� = full width at half maximum

Example:  mass of resonance particle, e.g. �, K*, �0, ...

� = decay rate (inverse of mean lifetime)

G. Cowan !31
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Landau distribution
For a charged particle with � = v /c traversing a layer of matter
of thickness d, the energy loss � follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

��� ���

� ��� �
�

d

�

G. Cowan !32
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Landau distribution  (2)

�	����������
����
� all moments �

Mode (most probable 
value) sensitive to ��,
� particle i.d.

G. Cowan !33



Why not make your own random variables?

a free & powerful utility: ROOT   http://root.cern.ch/!

some frequently used random variables by ROOT!

•flat on [0,1] !

•Gaussian!

•Exponential!

•Poisson!

and so on…

34

    x1 = r1.Rndm(); 
    x2 = r2.Gaus(0.0,1.0); 
    x3 = r3.Exp(1.0); 
    x4 = r4.Poisson(3.0);

http://root.cern.ch/drupal/
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some theorems, laws...



the Law of Large Numbers
• Suppose you have a sequence of indep’t random variables x

i

- with the same mean µ
- and variances �2

i

- but otherwise distributed “however”
- the variances are not too large

lim
N!1

(1/N

2)
NX

i=1

�2
i

= 0 (1)

Then the average x

N

= (1/N)
P

i

x

i

converges to the true mean µ

• (Note) What if the condition (1) is finite but non-zero?
) the convergence is “almost certain” (i.e. the failures have measure zero)

In short, if you try many times, eventually you get the true mean!

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 37



the Central Limit Theorem
• Suppose you have a sequence of indep’t random variables x

i

- with means µ
i

and variances �2
i

- but otherwise distributed “however”
- and under certain conditions on the variances

The sum S =
P

i

x

i

converges to a Gaussian

lim
N!1

S �
P

µ
iqP

�2
i

! N (0, 1) (2)

• (Note) important not to confuse LLN with CLT

- LLN: with enough samples, the average ! the true mean
- CLT: if you put enough random numbers into your processor, the

distribution of their average ! N (0, 1)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 38
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The Central Limit Theorem
The sum of many small, uncorrelated random numbers

is asymptotically Gaussian distributed -- and gets more so

as you add more random numbers in.   Independent of

the distributions of the random numbers (as long as they stay

small).
an example of the CLT at work

39



more examples of CLT at work
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the Neyman-Pearson Lemma
We will explain it later when we discuss the “critical region” ...

4152

Exp5 data

m (TOF) = 100ps

P<1.25GeV/c

p

I
π K p



the Wilk’s theorem
We will encounter it later when we discuss the “likelihood ratio” ...

42
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Hypothesis Testing



Two approaches
Relative frequency!

!

!

!

Subjective probability

44

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 5 

Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 5 

Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 

Frequentist approach is, in general, easy to understand, but 
some HEP phenomena are best expressed by subjective prob., 
e.g. systematic uncertainties, prob(Higgs boson exists), ...

Frequentist

BayesianG. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 4 

A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional probability: 

Remember?



Bayes’ theorem
From the definition of conditional prob., we have!

!

!

•but !

•therefore,!

!

•First published (posthumous) by Rev. Thomas Bayes (1702-1761)

45

An essay towards solving a problem in the doctrine of chances, 
Phil. Trans. R. Soc. 53 (1763) 370.

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 6 

Bayes� theorem 
From the definition of conditional probability we have 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702!1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 

P (A \B) = P (B \A)

P (A|B) =
P (B|A) P (A)

P (B)

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 6 

Bayes� theorem 
From the definition of conditional probability we have 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702!1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 



46Kyle Cranmer (NYU)
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... in pictures (from Bob Cousins)

16

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7



0 1 probability exp/est/test theorems basic prob L/KID Bayesian prob

Bayesian probability: tossing a coin
I suppose I stand to win or lose money in a game of chance
I my companion gives me a coin to use in the game
I do I trust the coin?
I what is P(fair coin)?
I frequentist answer:

I toss the coin n times
I P(heads) = limn!1 nH/n
I make a complicated statement about the results, which is

only indirectly about whether the coin is fair (see Lec.2 . . . )
I but I can only test the coin with five throws:

I I get 4H, 1T
I do I trust the coin?

I frequentist answer based on these 5 trials: not much info
I Bayesian answer depends on your prior belief . . .
I assume for illustration that a bad coin has P(heads) = 0.75
I a proper analysis would involve integrating over priors, etc.

Bruce Yabsley Statistics for Belle: Fundamentals
47
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0 1 probability exp/est/test theorems basic prob L/KID Bayesian prob

Bayesian probability: interpreting the coin tosses

Likelihoods:

P((4H,1T) | fair) = 0.1563

P((4H,1T) | bad) = 0.3955

Priors:

P(fair | BG) = 0.95

P(bad | BG) = 0.05

Posterior:

P(fair | (4H, 1T ), BG) =
P((4H,1T) | fair) · P(fair | BG)�

i P((4H,1T) | i) · P(i | BG)

=
0.1563 · 0.95

0.1563 · 0.95 + 0.3955 · 0.05
= 0.882

Bruce Yabsley Statistics for Belle: Fundamentals

GG

GG

GG
GG
GG
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0 1 probability exp/est/test theorems basic prob L/KID Bayesian prob

Bayesian probability: interpreting the coin tosses

Likelihoods:

P((4H,1T) | fair) = 0.1563

P((4H,1T) | bad) = 0.3955

Priors:

P(fair | DG) = 0.50

P(bad | DG) = 0.50

Posterior:

P(fair | (4H, 1T ), BG) =
P((4H,1T) | fair) · P(fair | DG)�

i P((4H,1T) | i) · P(i | DG)

=
0.1563 · 0.50

0.1563 · 0.50 + 0.3955 · 0.50
= 0.283

Bruce Yabsley Statistics for Belle: Fundamentals

BG

BG

BG

BG



Frequentist statistics – general philosophy

• In frequentist statistics, probabilities such as
P(Higgs boson exists)
P(0.117 < ↵

s

< 0.121)
are either 0 or 1, but we don’t have the answer

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 50



Bayesian statistics – general philosophy
• In Bayesian statistics, interpretation of probability is extended to the degree

of belief (i.e. subjective).

• suitable for hypothesis testing (but no golden rule for priors)

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 8 

Bayesian Statistics ! general philosophy  
In Bayesian statistics, interpretation of probability extended to 
degree of belief (subjective probability).  Use this for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayesian methods can provide more natural treatment of  non- 
repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 

No golden rule for priors (“if-then” character of Bayes’ thm.) 

• can also provide more natural handling of non-repeatable things:
e.g. systematic uncertainties, P(Higgs boson exists)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 51



Hypothesis testing
• A hypothesis H specifies the probability for the data

(shown symbolically as ~x here),
often expressed as a function f(~x|H)

• The measured data ~x could be anything:

* observation of a single particle, a single event, or an entire experiment
* uni-/multi-variate, continuous or discrete

• the two kinds:

* simple (or “point”) hypothesis – f(~x|H) is completely specified
* composite hypothesis – H contains unspecified parameter(s)

• The probability for ~x given H is also called the likelihood of the hypothesis,
written as L(~x|H)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 52



Hypothesis test

• Consider e.g. a simple hypothesis H0 and an
alternative H1

• A (frequentist) test of H0:
Specify a critical region w of the data space ⌦ such
that, assuming H0 is correct, there is no more than
some (small) probability ↵ to observe data in w

P(~x 2 w|H0)  ↵

• ↵: “size” or “significance level” of the test

• If ~x is observed within w, we reject H0 with a
confidence level 1 � ↵

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 10 

Definition of a (frequentist) hypothesis test 
Consider e.g. a simple hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
!, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ! w | H0 ) " ! 

Need inequality if data are 
discrete. 

# is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space $ 

critical region w 

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014 53



Hypothesis test
• In general, 9 an 1 number of possible critical regions that give the same

significance level ↵

• Usually, we place the critical region where there is a low probability ↵ for
~x 2 w if H0 is true, but high if the alternative (H1) is true

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 11 

Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level !. 

Roughly speaking, place the critical region where there is a low  
probability (!) to be found if H0 is true, but high if the alternative 
H1 is true: 

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 54



Test statistic
• The boundary surface of the critical region

for an n-dim. data space can be defined by
an equation of the form:

t(x1, · · · , xn) = tc

where t(x1, · · · , xn) is a scalar test statistic.

• For the test statistic t, we can work out the
PDFs g(t|H0), g(t|H1), etc.

• Decision boundary is now given by a signle
‘cut’ on t, thus defining the critical region
) for an n-dim. data space, the problem is
reduced to a 1-dim. problem

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 16 

Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 55



Type-I, Type-II errors

• Rejecting H0 when it is true is called the Type-I error

(Q) Given the significance ↵ of the test, what is the maximum probability of
Type-I error?

• We might also accept H0 when it is indeed false, and an alternative H1 is true.
This is called the Type-II error

The probability � of Type-II error:

P(~x 2 ⌦� w|H1) = �

1 � � is called the power of the test with respect to H1

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 56



from an FAPPS09 Lecture by  S. T’Jampens !57

Two possible errors



exercise on Type-I, II errors
Since B ! K⇤� has much higher branching fraction than B ! ⇢�, the former can be a
serious background to the latter. It is crucial to understand the “efficiency” and “fake rate”
of K/⇡ identification system of your experiment in this study. The figure below shows the
MK⇡ invarianbt mass distribution, where one of the pion mass (in ⇢0 ! ⇡+⇡� decay) is
replaced by the Kaon mass, for the B0 ! ⇢0� signal candidates (Belle, PRL 2008).

BðB ! ð!; !Þ"Þ
BðB ! K#"Þ ¼ 0:0284% 0:0050þ0:0027

'0:0029; (3)

where the first and second errors are statistical and system-
atic, respectively.

Using the prescription in Ref. [6], Eq. (3), for example,
gives jVtd=Vtsj ¼ 0:195þ0:020

'0:019ðexpÞ % 0:015ðthÞ. This is
consistent with determinations from B0

s mixing [14], which
involve box diagrams rather than penguin loops. We also
find BðBþ ! K#þ"Þ ¼ ð384% 17Þ ( 10'7 and BðB0 !
K#0"Þ ¼ ð378% 8Þ ( 10'7 (statistical error only), in
agreement with the world average.

From Table I, we calculate the isospin asymmetry
!ð!"Þ ¼ #

B0

2#Bþ
BðBþ ! !þ"Þ=BðB0 ! !0"Þ ' 1 and find

!ð!"Þ ¼ '0:48þ0:21þ0:08
'0:19'0:09: (4)

The result is in agreement with the previous measurement
[3] and is only marginally consistent with the SM expec-
tations [6,7].

We also calculate the direct CP-violating asym-
metry ACPðBþ ! !þ"Þ ¼ ½Nð!'"Þ ' Nð!þ"Þ*=
½Nð!'"Þ þ Nð!þ"Þ* using a simultaneous fit to Bþ !
!þ" and B' ! !'" data samples. We consider system-
atic errors due to the fitting procedure, asymmetries in the
backgrounds, and possible detector bias estimated using a
B ! D$ control sample. We use the measured asymme-
tries [14] for Bþ ! K#þ", !þ$0, !þ%, and B ! Xs" and
assume up to 100% asymmetry for other charmless had-
ronic B decays. We find

ACPðBþ ! !þ"Þ ¼ '0:11% 0:32% 0:09: (5)

The result is consistent with the SM predictions [6,16].
In conclusion, we present a newmeasurement of branch-

ing fractions for B ! !" and B ! !", a measurement of
the isospin asymmetry, and the first measurement of the
directCP-violating asymmetry forBþ ! !þ". The results
are consistent with SM predictions. We improve the ex-
perimental precision on jVtd=Vtsj determined from penguin
loops, finding good agreement with the value determined
from box diagrams [14].
We thank the KEKB group for excellent operation of the

accelerator, the KEK cryogenics group for efficient sole-
noid operations, and the KEK computer group and the NII
for valuable computing and SINET3 network support. We
acknowledge support from MEXT and JSPS (Japan); ARC
and DEST (Australia); NSFC and KIP of CAS (China);
DST (India); MOEHRD, KOSEF, and KRF (Korea); KBN
(Poland); MES and RFAAE (Russia); ARRS (Slovenia);
SNSF (Switzerland); NSC and MOE (Taiwan); and DOE
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FIG. 2 (color online). Projections of the fit results to Mbc (in
j!Ej< 0:1 GeV and 0:92 GeV=c2 <MK$) and !E (in
5:273 GeV=c2 <Mbc < 5:285 GeV=c2 and 0:92 GeV=c2 <
MK$) and for B0 ! !0", MK$. Curves show the signal (dashed,
red), continuum (dotted-dotted-dashed, blue), B ! K#" (dotted,
magenta), other backgrounds (dashed-dotted, green), and the
total fit result (solid).

PRL 101, 111801 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

12 SEPTEMBER 2008

111801-5

Express the following observables in Type-I & Type-II
errors.

• f⇡+!K+ = probability of misidentifying a ⇡+ as a K+

• fK+!⇡+ = probability of misidentifying a K+ as a ⇡+

• ✏K+ = prob. of identifying a K+ correctly as a K+

• ✏⇡+ = prob. of identifying a ⇡+ correctly as a ⇡+

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 58

What are H0 & H1, for each case?



Probability P(H|~x)

• In the frequentist approach, we do not, in general, assign probability of a
hypothesis itself.
Rather, we compute the probability to accept/reject a hypothesis assuming
that it (or some alternative) is true.

• In Bayesian, on the other hand, probability of any given hypothesis (degree of
belief) could be obtained by using the Bayes’ theorem:

P(H|~x) = P(~x|H)⇡(H)R
P(~x|H0)⇡(H0)dH0

which depends on the prior probability ⇡(H)
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How to choose an optimal test statistic
• Use Neyman-Pearson lemma

For a test of size ↵ of the simple hypothesis H0,
to obtain the highest power w.r.t. the simple alternative H1,
choose the critical region w such that the likelihoot ratio satisfies

P(~x|H1)

P(~x|H0)
� k

everywhere in w and is < k elsewhere,
where k is a constant chosen for each pre-determined size ↵.

• Equivalently, the optimal scalar test statistic is

t(~x) = P(~x|H1)/P(~x|H0)

(Note) Any monotonic function of this leads to the same test.
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Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given 
size (eg. probability under H0 is 1-   )

77
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P (x|H0)

> k�
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CERN School HEP, Romania, Sept. 2011

A short proof of Neyman-Pearson
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Now consider a variation on the contour that has the same 
size
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Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

A short proof of Neyman-Pearson
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P ( |H0) = P ( |H0)

Now consider a variation on the contour that has the same size 
(eg. same probability under H0)
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CERN School HEP, Romania, Sept. 2011

A short proof of Neyman-Pearson
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P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

And for the region we lost, we also have an inequality
Together they give...



the p-value

• With p-value, we express the level of agreement b/w data and H
p = probabilty, under assumption of H, to observe data with equal or lesser
compatibility with H, in comparison to the data we obtained
6= the probability that H is true

• In frequentist statistics, we don’t talk about P(H).
In Bayesian, however, we determine P(H|~x) using the Bayes’ theorem
( depending on the prior probabilty ⇡(H)

• For now, we stick with the frequentist interpretation of the p-value
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p-values 

where $ (H) is the prior probability for H. 

Express level of agreement between data and H with p-value: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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Significance from the p-value
Often we quote the significance Z, for a given p-value !

•Z = the number of standard dev. that a Gaussian random variable would 
fluctuate in one direction to give the same p-value

G. Cowan  20 

Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Cargese 2012 / Statistics for HEP / Lecture 1 

E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 % 10�7. (Ex) Z = 5 (a “5-sigma effect”) ⇔ p = 2.9 x 10-7



Gaussian (Normal) distribution

68

24 36. Statistics

36.3.2.4. Gaussian distributed measurements:

An important example of constructing a confidence interval is when the data consists
of a single random variable x that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ,

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
(36.55)

is the probability that the measured value x will fall within ±δ of the true value µ. From
the symmetry of the Gaussian with respect to x and µ, this is also the probability for
the interval x ± δ to include µ. Fig. 36.4 shows a δ = 1.64σ confidence interval unshaded.
The choice δ = σ gives an interval called the standard error which has 1 − α = 68.27% if
σ is known. Values of α for other frequently used choices of δ are given in Table 36.1.

$3 $2 $1 0 1 2 3

f (x; µ,%)

! /2! /2

(x$µ) /%

1$!

Figure 36.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by α = 0.1, are as shown.

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 36.1.

The relation (36.55) can be re-expressed using the cumulative distribution function for
the χ2 distribution as

α = 1 − F (χ2; n) , (36.56)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be obtained from Fig. 36.1 on the
n = 1 curve or by using the ROOT function TMath::Prob.

For multivariate measurements of, say, n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one

requires the full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described
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Table 36.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

in Sections 36.1.2 and 36.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore, the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 36.5, corresponding
to a contour χ2 = χ2

min + 1 or ln L = lnLmax − 1/2. The ellipse is centered about the

estimated values θ̂, and the tangents to the ellipse give the standard deviations of the
estimators, σi and σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (36.57)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the distance σi from the
ellipse’s horizontal center-line at which the ellipse becomes tangent to vertical, i.e., at the
distance ρijσi below the center-line as shown. As ρij goes to +1 or −1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, θj , is known from previous
measurements to a precision much better than σj , so that the current measurement
contributes almost nothing to the knowledge of θj . However, the current measurement of
θi and its dependence on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the value of θi, which
minimizes χ2 at a fixed value of θj , such as the PDG best value. This θi value lies along
the dotted line between the points where the ellipse becomes tangent to vertical, and has
statistical error σinner as shown on the figure, where σinner = (1 − ρ2

ij)
1/2σi. Instead of

the correlation ρij , one reports the dependency dθ̂i/dθj which is the slope of the dotted

line. This slope is related to the correlation coefficient by dθ̂i/dθj = ρij ×
σi
σj

.

As in the single-variable case, because of the symmetry of the Gaussian function
between θ and θ̂, one finds that contours of constant lnL or χ2 cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

lnL(θ) ≥ lnLmax − ∆ lnL , (36.58)
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Remember?

(Ex) Z = 5 (a “5-sigma effect”) ⇔ p = 2.9 x 10-7
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p-value example:  testing whether a coin is �fair� 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 

!69
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The significance of an observed signal 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 

!70
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Quiz

(observation)	  Six	  out	  of	  9	  starting	  hitters	  have	  family	  name	  ‘Kim’.	  

(fact)	  According	  to	  census,	  ~20%	  of	  all	  Koreans	  have	  family	  name	  
‘Kim’.	  

(Hypothesis	  to	  test)	  The	  manager	  of	  1983	  Tigers	  (himself	  a	  ‘Kim’)	  
has	  a	  bias	  toward	  players	  with	  family	  name	  ‘Kim’.	  

1983 프로야구 챔피언 해태 타이거즈 선발 타순



Model-independent test?

• In general, we cannot find a single critical region that gives the maximum
power for all possible alternatives (no “uniformly most powerful” test)

• In HEP, we often try to construct a test of the Standard Model as H0 (or
sometimes called “background only”)
such that we have a well specified false discovery rate ↵ (=prob. to reject H0
when it is true),
and high power w.r.t. some interesting alternative H1, e.g. SUSY, Z0, etc.

• But, there is no such thing as a model-independent test.
Any statistical test will inevitably have high power w.r.t. some alternatives
and less for others

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014 73



Intervals



Measurement with errors
Let’s say we are doing a single measurement!

!

Frequentist interpretation!

•Repeating the measurement many times under identical 
conditions (“ensemble”), in 68.3% of those results, the true value 
of x will lie between a - b and a + b!

Result of each measurement is a sampling from a Gaussian 
distribution with mean μ and width σ!

•We may not know μ!

•We have some idea about σ -- experimental sensitivity
75

x = a± b



when 𝝁±𝝈 is not enough…

76

If the PDF of the estimator is not Gaussian, or 
if there are physical boundaries on the possible values of the 
parameter,  
one usually quotes an interval given a confidence level.



Confidence interval from inversion of a test

77

Confidence interval from inversion of a test
• Suppose a model contains a parameter µ

Which values are consistent with data and which disfavored?

• Carry out a test of size ↵ for all values of µ.
) The values that are not rejected constitutes a confidence interval for µ at
confidence level CL = 1 � ↵.

• Probability of rejecting true value of ↵ is  ↵

) by construction the confidence interval will contain the true value of µ with
probability � 1 � ↵.

* The interval depends on the choice of the test (critical region).
* If the test is formulated in terms of a p-value, pµ, then the confidence

interval represents those values of µ for which pµ > ↵.
* To find the end points of the interval, set pµ = ↵ and solve for µ.

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014



a Bayesian procedure for intervals
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37.4.1. Bayesian intervals :

As described in Sec. 37.2.4, a Bayesian posterior probability may be used to determine
regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =

∫ θup

θlo

p(θ|x) dθ . (37.55)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be set to a physical
boundary or to plus or minus infinity. In other cases, one might be interested in the set
of θ values for which p(θ|x) is higher than for any θ not belonging to the set, which may
constitute a single interval or a set of disjoint regions; these are called highest posterior
density (HPD) intervals. Note that HPD intervals are not invariant under a nonlinear
transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (37.56)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. For example, to obtain an upper limit on
s, one may proceed as follows. The likelihood for s is given by the Poisson distribution
for n with mean s + b,

P (n|s) =
(s + b)n

n!
e−(s+b) , (37.57)

along with the prior (37.56) in (37.30) gives the posterior density for s. An upper limit
sup at confidence level (or here, rather, credibility level) 1 − α can be obtained by
requiring

1 − α =

∫ sup

−∞

p(s|n)ds =

∫ sup
−∞

P (n|s) π(s) ds
∫
∞

−∞
P (n|s) π(s) ds

, (37.58)

where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (37.58) to incomplete gamma functions, the solution for the
upper limit is found to be

sup = 1
2F−1

χ2 [p, 2(n + 1)] − b , (37.59)

where F−1
χ2 is the quantile of the χ2 distribution (inverse of the cumulative distribution).

Here the quantity p is

p = 1 − α
(
Fχ2 [2b, 2(n + 1)]

)
, (37.60)
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If the physical value is non-negative, 
one may choose a prior:
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Likelihood for s, given b, is
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, (37.58)

where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (37.58) to incomplete gamma functions, the solution for the
upper limit is found to be

sup = 1
2F−1

χ2 [p, 2(n + 1)] − b , (37.59)

where F−1
χ2 is the quantile of the χ2 distribution (inverse of the cumulative distribution).

Here the quantity p is

p = 1 − α
(
Fχ2 [2b, 2(n + 1)]

)
, (37.60)
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one may choose a prior:
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37.4.1. Bayesian intervals :

As described in Sec. 37.2.4, a Bayesian posterior probability may be used to determine
regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =

∫ θup

θlo

p(θ|x) dθ . (37.55)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be set to a physical
boundary or to plus or minus infinity. In other cases, one might be interested in the set
of θ values for which p(θ|x) is higher than for any θ not belonging to the set, which may
constitute a single interval or a set of disjoint regions; these are called highest posterior
density (HPD) intervals. Note that HPD intervals are not invariant under a nonlinear
transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (37.56)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. For example, to obtain an upper limit on
s, one may proceed as follows. The likelihood for s is given by the Poisson distribution
for n with mean s + b,

P (n|s) =
(s + b)n

n!
e−(s+b) , (37.57)
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relating the integrals in Eq. (37.58) to incomplete gamma functions, the solution for the
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�2 :	  inverse	  of	  the	  CDF

If what we seek is of a very low (or no) signal, interval ➔ UL



(Ex) UL on Poisson parameter
• Consider again the case of observing n ⇠ Poisson(s + b). Suppose b = 4.5 and

nobs = 5. Find upper limit on s at 95% CL.

• Relevant alternative is s = 0, resulting in critical region at low n.

• The p-value of hypothesized s is P(n  nobs; s, b).
Therefore, the upper limit sup at CL = 1 � ↵ is obtained from
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Frequentist “confidence intervals”
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on repeated measurements  

Remember frequentist approach is always about repeated measurements! 

“confidence interval”  

= intervals constructed to include the true value of the 
parameter with a probability ≥ (a specified value)



Frequentist “confidence intervals”
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Consider a pdf f(x;𝜽) 

• x : outcome of an experiment 

• 𝜽 : unknown parameter for which we set the interval 
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37.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ), we can find for a
pre-specified probability 1 − α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) = 1 − α =

∫ x2

x1

f(x; θ) dx . (37.62)

This is illustrated in Fig. 37.3: a horizontal line segment [x1(θ, α),
x2(θ, α)] is drawn for representative values of θ. The union of such intervals for all values
of θ, designated in the figure as D(α), is known as the confidence belt. Typically the
curves x1(θ, α) and x2(θ, α) are monotonic functions of θ, which we assume for this
discussion.

Possible experimental values x

p
a
ra

m
et

er
 θ x2(θ), θ2(x) 

x1(θ), θ1(x) 

x1(θ0) x2(θ0) 

D(α)

θ0

Figure 37.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure. We see from the
figure that θ0 lies between θ1(x) and θ2(x) if and only if x lies between x1(θ0) and x2(θ0).
The two events thus have the same probability, and since this is true for any value θ0, we
can drop the subscript 0 and obtain

1 − α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)) . (37.63)

December 18, 2013 12:01

37. Statistics 25

37.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ), we can find for a
pre-specified probability 1 − α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) = 1 − α =

∫ x2

x1

f(x; θ) dx . (37.62)

This is illustrated in Fig. 37.3: a horizontal line segment [x1(θ, α),
x2(θ, α)] is drawn for representative values of θ. The union of such intervals for all values
of θ, designated in the figure as D(α), is known as the confidence belt. Typically the
curves x1(θ, α) and x2(θ, α) are monotonic functions of θ, which we assume for this
discussion.

Possible experimental values x

p
a
ra

m
et

er
 θ x2(θ), θ2(x) 

x1(θ), θ1(x) 

x1(θ0) x2(θ0) 

D(α)

θ0

Figure 37.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure. We see from the
figure that θ0 lies between θ1(x) and θ2(x) if and only if x lies between x1(θ0) and x2(θ0).
The two events thus have the same probability, and since this is true for any value θ0, we
can drop the subscript 0 and obtain

1 − α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)) . (37.63)

December 18, 2013 12:01

co
nfi

de
nc

e b
elt

the confidence interval,  
given a measured 
outcome of x0 = x1(✓0)



Coincidence of frequentist and Bayesian intervals

If the expected background is zero, 
the Bayesian upper limit (for a 
Poisson RV) becomes equal to the 
limit determined by frequentist 
approach. 

For more details, you may read e.g. a 
statistics review in PDG.
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37.4.1. Bayesian intervals :

As described in Sec. 37.2.4, a Bayesian posterior probability may be used to determine
regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =

∫ θup

θlo

p(θ|x) dθ . (37.55)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be set to a physical
boundary or to plus or minus infinity. In other cases, one might be interested in the set
of θ values for which p(θ|x) is higher than for any θ not belonging to the set, which may
constitute a single interval or a set of disjoint regions; these are called highest posterior
density (HPD) intervals. Note that HPD intervals are not invariant under a nonlinear
transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (37.56)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. For example, to obtain an upper limit on
s, one may proceed as follows. The likelihood for s is given by the Poisson distribution
for n with mean s + b,

P (n|s) =
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along with the prior (37.56) in (37.30) gives the posterior density for s. An upper limit
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where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (37.58) to incomplete gamma functions, the solution for the
upper limit is found to be

sup = 1
2F−1

χ2 [p, 2(n + 1)] − b , (37.59)

where F−1
χ2 is the quantile of the χ2 distribution (inverse of the cumulative distribution).

Here the quantity p is

p = 1 − α
(
Fχ2 [2b, 2(n + 1)]

)
, (37.60)
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where Fχ2 is the cumulative χ2 distribution. For both Fχ2 and F−1
χ2 above, the argument

2(n + 1) gives the number of degrees of freedom. For the special case of b = 0, the limit
reduces to

sup = 1
2F−1

χ2 (1 − α; 2(n + 1)) . (37.61)

It happens that for the case of b = 0, the upper limit from Eq. (37.61) coincides
numerically with the frequentist upper limit discussed in Section 37.4.2.3. Values for
1−α = 0.9 and 0.95 are given by the values µup in Table 37.3. The frequentist properties
of confidence intervals for the Poisson mean found in this way are discussed in Refs. [2]
and [21].

As in any Bayesian analysis, it is important to show how the result changes
under assumption of different prior probabilities. For example, one could consider the
Jeffreys prior as described in Sec. 37.2.4. For this problem one finds the Jeffreys prior
π(s) ∝ 1/

√
s + b for s ≥ 0 and zero otherwise. As with the constant prior, one would not

regard this as representing one’s prior beliefs about s, both because it is improper and
also as it depends on b. Rather it is used with Bayes’ theorem to produce an interval
whose frequentist properties can be studied.

If the model contains nuisance parameters then these are eliminated by marginalizing,
as in Eq. (37.36), to obtain the p.d.f. for the parameters of interest. For example, if
the parameter b in the Poisson counting problem above were to be characterized by a
prior p.d.f. π(b), then one would first use Bayes’ theorem to find p(s, b|n). This is then
marginalized to find p(s|n) =

∫
p(s, b|n)π(b) db, from which one may determine an interval

for s. One may not be certain whether to extend a model by including more nuisance
parameters. In this case, a Bayes factor may be used to determine to what extent the
data prefer a model with additional parameters, as described in Section 37.3.3.

37.4.2. Frequentist confidence intervals :

The unqualified phrase “confidence intervals” refers to frequentist intervals obtained
with a procedure due to Neyman [29], described below. These are intervals (or in the
multiparameter case, regions) constructed so as to include the true value of the parameter
with a probability greater than or equal to a specified level, called the coverage probability.
It is important to note that in the frequentist approach, such coverage is not meaningful
for a fixed interval. A confidence interval, however, depends on the data and thus would
fluctuate if one were to repeat the experiment many times. The coverage probability
refers to the fraction of intervals in such a set that contain the true parameter value.
In this section, we discuss several techniques for producing intervals that have, at least
approximately, this property.
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Parameter Estimation



Basics of parameter estimation

• The parameters of a PDF are constants characterizing its shape, e.g.

f(x; ✓) =
1
✓

e�x/✓

where ✓ is the parameter, while x is the random variable.

• Suppose we have a sample of observed values, ~x.
We want to find some function of the data to estimate the parameter(s): ✓̂(~x).

Often ✓̂ is called an estimator.

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 85



Properties of estimators
• If we were to repeat the entire measurement, the set of estimates would

follow a PDF:

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 1 25 

Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
'  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
'  small bias & variance are in general conflicting criteria 

- We want small (or zero) bias () syst. error): b = E[✓̂]� ✓
- and we want a small variance () stat. error): V[✓̂]

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 86



Bias vs. Consistency

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014 87



The likelihood function

• Suppose the entire result of an experiment (set of measurements) is a
collection of numbers ~x, and suppose the joint PDF for the data ~x is a
function depending on a set of parameters ~✓: f(~x; ~✓)

• Evaluate this function with the measured data ~x, regarding this as a
function of ~✓ only. This is the likelihood function.

L(~✓) = f(~x; ~✓) (~x,fixed)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 88



The likelihood function for i.i.d. data
i.i.d. = independent and identically distributed

• Consider n independent observations of x: x1, · · · , xn, where x follows f(x, ✓).
The joint PDF for the whole data sample is:

f(x1, · · · , xn; ~✓) =
nY

i=1

f(xi; ~✓)

• In this case, the likelihood function is

L(~✓) =
nY

i=1

f(xi; ~✓) (xi constant)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 89

So we define the max. likelihood (ML) estimator(s) to be the 
parameter value(s) for which the L becomes maximum.



ML estimator example: fitting to a straight line

• Suppose we have a set of data:
(xi, yi,�i), i = 1, · · · , n.

• Modeling: yi are independent and follow
yi ⇠ G(µ(xi),�i) (G: Gaussian) where µ(xi)
are modelled as µ(x; ✓0, ✓1) = ✓0 + ✓1x

Assume xi and �i are known.

• Goal: to estimate ✓0

Here, let’s suppose we don’t care about ✓1
(an example of a nuisance parameter)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014 90



ML fit with Gaussian data

• In this example, the yi are assumed independent, so that likelihood function is
a product of Gaussians:

L(✓0, ✓1) =
nY

i=1

1p
2⇡�i

exp

"
�1

2
(yi � µ(xi; ✓0, ✓1))

2

�2
i

#

• Then maximizing L is equivalent to minimizing

�2(✓0, ✓1) = �2 ln L(✓0, ✓1) + C =
nX

i=1

(yi � µ(xi; ✓0, ✓1))
2

�2
i

i.e., for Gaussian data, ML fitting is the same as the method of least squares

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014 91

Wilk’s	  theorem



ML fit or Least-square fit?
Consider we have a random variable x ∈ [0, 3], and a 
distribution f(x). 

In a series of measurements, we obtained 

•9 events in [0,1), 10 events in [1,2), and 8 events in [2,3] 

•We have a model of uniform f(x), and would like to estimate the 
mean value of ∫ f(x) dx for each histogram bin. 

Run a thought-experiment, comparing 

•maximum likelihood method, and least-square method 

•Do they give the same result?
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Bayesian likelihood function
• Suppose our L-function contains two parameters ✓0 and ✓1, where we have

some knoweldege about the prior probability on ✓1 from previous
measurements:

⇡(✓0, ✓1) = ⇡0(✓0)⇡1(✓1)

⇡0(✓0) = const.

⇡1(✓1) =
1p

2⇡�p
e�(✓1�✓p)

2/2�2
p

• Putting this into the Bayes’ theorem gives the posterior probability:

p(✓0, ✓1|~x) /
nY

i=1

1p
2⇡�i

e�(yi�µ(xi;✓0,✓1))
2/2�2

i ⇡0
1p

2⇡�p
e�(✓1�✓p)

2/2�2
p

• Then, p(✓0|~x) =
R

p(✓0, ✓1|~x) d✓1
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with alternative priors
• Suppose we don’t have a previous measurement of ✓1 but rather a theorist

saying that ✓1 should be > 0 and not too much greater than, say, 0.1 or so.
In that case, we may try modeling the prior for ✓1 as something like

⇡1(✓1) =
1
⌧

e�✓1/⌧ , ✓1 � 0, ⌧ = 0.1

• From this we obtain (numerically) the posterior PDF for ✓0

• This plot summarizes all knowledge about
✓0.
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other advanced topics
 nuisance parameters & systematic uncertainties 
 spurious exclusion ➔ the CLs procedure 
 look-elsewhere effect



Systematic uncertainties?
In statistics, they call it the “nuisance parameter”
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Nuisance parameters
• In general our model of the data is not perfect

• can improve model by including additional adjustable parameters:
L(x|✓) ! L(x|✓, ⌫)

• Nuisance parameter $ systematic uncertainty
Some point in the parameter space of the enlarged model must be “true”

• Presence of nuisance parameter(s) decreases sensitivity of analysis to the
parameter of interest (e.g. larger variance of estimate).
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p-values with nuisance parameters

• Suppose we have a statistic q to test a hypothesized value of a parameter ✓,
such that the p-value of ✓ is

p✓ =

Z 1

q✓,obs
f(q✓|✓, ⌫) dq✓

• But what value of ⌫ should we use for f(q✓|✓, ⌫)?

• In the large-sample limit, f(q✓|✓, ⌫) becomes independent of the nuisance
parameters – a feature of statistics based on the profile likelihood ratio

• But in general for finite sample this is not true.

• One may therefore be unable to reject some ✓ values if all values of ⌫ shall be
considered. (Interval for ✓ “overcovers”).
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The profile likelihood ratio
• Base significance test on the profile likelihood ratio

6 

The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 2 

maximizes L for 
Specified µ!

maximize L!

The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma); statistic above is near optimal. 

Advantage of !(µ) is that in large sample limit, f(-2ln!(µ)|µ)   
approaches a chi-square pdf for 1 degree of freedom (Wilks thm). 

profile likelihood 

- the likelihood ratio of point hypotheses gives optimal test
(by Neyman-Pearson lemma)

- the statistic above is nearly optimal

• Advantage of �(µ) – in large sample limit, f(�2 ln�(µ) |µ ) approaches a
⇤2 pdf for n = 1 (by Wilk’s theorem)

Y. Kwon (Yonsei Univ.) B+ � ⌧+⌫⌧ & searches for heavy ⌫ at the B-factories Dec.20, 2012 6
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low sensitivity & spurious exclusion
Sometimes, the effect of a given hypothesized µ is very small relative 
to the null (µ =0) prediction!

•This means that the distributions f (qμ|μ) and f (qμ|0) will be almost the 
same.

100
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 



G. Cowan  Cargese 2012 / Statistics for HEP / Lecture 2 19 

Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than !.  Use this power as a measure of the sensitivity. 

low sensitivity & spurious exclusion
In contrast, for a high-sensitivity test, the two pdf’s -- f (qμ|μ) and f 
(qμ|0) -- are well separated

101

In this case, the power is substantially higher than 1−α. !
Use this 'power' as a measure of the sensitivity.
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•This means that one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g. 
mH = 1000 TeV) 

• It is called the “spurious 
exclusion”

spurious = not being what it claims to be

Consider again the case of low-sensitivity

low sensitivity & spurious exclusion



Handling spurious exclusion

• The problem of excluding values to which one has no sensitivity is known for
a long time

• In the 1990s this problem was re-examined for the LEP Higgs search, e.g.
T. Junk, NIM A 434, 435 (1999); A.L. Read, J. Phys. G 28, 2693 (2002).

and led to the “CLs” procedure for upper limits
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The CLs procedure
• In the CLs formulation, one tests both the µ = 0 (b) and µ > 0 (s + b)

hypotheses with the same statistic Q = �2 ln Ls+b/Lb

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014
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The CLs procedure

105

The CLs procedure

• The CLs prescription is to base the test on the usual p-value (CLs+b), but
rather to divide this by CLb(= 1 � pb)

CLs ⌘
CLs+b

CLb
=

ps+b

1 � pb

• Reject s + b hypothesis if CLs < ↵

• Reduces “effective” p-value when
the two distributions become close,
thus preventing exclusion if
sensitivity is low
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The CLs procedureThe CLs procedure

CLs ⌘
CLs+b

CLb
=

ps+b

1 � pb

• Reject s + b hypothesis if CLs < ↵

• Reduces “effective” p-value when
the two distributions become close,
thus preventing exclusion if
sensitivity is low
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The CLs procedure

CLs ⌘
CLs+b

CLb
=

ps+b

1 � pb

• Reject s + b hypothesis if CLs < ↵

• Reduces “effective” p-value when
the two distributions become close,
thus preventing exclusion if
sensitivity is low
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the Look Elsewhere Effect



consider…
Suppose you throw a coin 10 times, and you’ve got 10 heads, 
zero tails.  !

•It’s very unusual.   

•Can you quantify how unusual this result is?   

In particular, can you say the probability for this kind of 
peculiarity happening is 1/1024?!

•No! Think why!!

What must then be the correct answer?
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Look-Elsewhere Effect
Suppose a model for a mass distribution allows for a peak at a 
mass m with amplitude 𝝁!

and the data show a bump at a mass m0

109

How	  consistent	  is	  this	  with	  the	  
no-‐bump	  (𝝁	  =0)	  hypothesis?

Gross and Vitells, EPJC 70:525-530 (2010), arXiv:1005.1891



Local p-value
• First, suppose that the mass peak value m0 was known a priori.

• Test consistency of bump with the µ = 0 hypothesis with e.g. L-ratio

tfix = �2 ln
✓

L(0,m0)

L(µ,m0)

◆

where “fix” indicates that the mass peak value is fixed to m0.

• The resulting p-value

plocal =

Z 1

tfix,obs

f(tfix|0) dtfix

gives the probability to find a value of tfix at least as great as the observed
value at the specific mass m0, and is called the local p-value.
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Global p-value

• Now, suppose we did not know where to expect a peak. In other words, the
signal can be found at every value of m.

• What we want is the probability to find a peak at least as significant as the
one observed anywhere in the distribution

• For this, include the mass as an adjustable parameter in the fit, then test
significance of peak using
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tfix vs. tfloat
• For a sufficiently large data sample, tfix ⇠ �2 for 1 deg. of freedom

(Wilk’s theorem)

• For tfloat there are two adjustable parameters, µ and m, and naively Wilk’s
theorem says tfloat ⇠ �2 for 2 d.o.f.

But, Wilk’s theorem does not hold in the
floating mass case because one of the
parameters (m) is not defined in the
µ = 0 model.

) getting tfloat distribution is more
difficult.
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Approximate correction for LEE

• Need to related the p-values for the fixed and floating-mass analyses (at least
approximately)

• (Gross & Vitells) The p-values are approximately related by

pglobal ⇡ plocal + hN(c)i

where hN(c)i = mean # of upcrossings of �2 ln L in the fit range based on a
threshold

c = tfix = Z2
local

• We may carry out the full MC (time and CPU-consuming) or do fixed-m
analysis and apply a correction factor (much faster!)
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Up-crossings of �2 ln L
pglobal ⇡ plocal + hN(c)i where hN(c)i = mean # of upcrossings of �2 ln L in the fit
range based on a threshold c = tfix

• What is ‘up-crossing’? How can we
obtain this number?

• With high threshold c, you need a
huge MC sample to estimate pglobal.

• For an economic alternative, hN(c)i
can be estimated from MC using a
much lower threshold c0:

hN(c)i ⇡ hN(c0)ie�(c�c0)/2

so we don’t need a huge computing
resource G. Cowan  TAE Benasque 2013 / Statistics in High Energy Physics 116 

Upcrossings of �2lnL 

�N(c)� can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires �N(c)�, 
the mean number  “upcrossings” of tfix = �2ln λ in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way �N(c)� can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 
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Examples to test what you’ve learned



what to make sense of mH plots, statistically
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how to read the green & yellow plots
• For every (assumed) value of mH, we want to find the CLs upper limit on

µ ⌘ �(H)/�SM(H) (solid curve)
• Also shown is the ‘expected upper limit’, determined for each assumed mH

value, under the assumption that we see no excess above background.
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how to read the p0 plots
• The local p0 values for a SM Higgs boson as a function of assumed mH.
• The minimal p0 (observed) is 2 ⇥ 10�6 at mH = 126.5 GeV.

) local significance of 4.7� ! reduced to 3.6� after LEE

 [GeV]Hm

110 115 120 125 130 135 140 145 150

0
L

o
c
a

l 
p

-710

-610

-510

-410

-310

-210

-110

1

10

σ1

σ2

σ3

σ4

σ5

 PreliminaryATLAS

-1 Ldt = 4.8 fb∫= 7 TeV, sData 2011, 

-1 Ldt = 5.9 fb∫= 8 TeV, sData 2012, 
γγ→SM H

 2011+2012
0

Observed p
 2011+2012

0
Expected  p

 2011
0

Observed p
 2011

0
Epected  p

 2012
0

Observed p

 2012
0

Expected  p

 2011+2012 (with ESS)
0

Observed p

 2011 (with ESS)
0

Observed p

 2012 (with ESS)
0

Observed p

Figure 10: Expected and observed local p0 values for a SM Higgs boson as a function of the hypothesized

Higgs boson mass (mH) for the combined analysis and for the
�

s = 7 TeV and
�

s = 8 TeV data samples

separately. The observed p0 including the e�ect of the photon energy scale uncertainty on the mass

position is included via pseudo-experiments and shown as open circles.
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s = 7 TeV

and
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s = 8 TeV data.
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how to read the “blue band” plots
• µ̂ vs. mH where µ̂ is the signal strength (= �/�SM) estimated by likelihood

method1. The blue band corresponds to approx. ±1� error bar for µ.

1Some details are skipped, for the sake of simplicity
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Now that you have the language 
to talk about stat. interpretation of HEP 

results (e.g. LHC), 
it’s your job to explore & enjoy them!

Thank you!


